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Abstract.  This paper considers some issues to do with valuational presentations of con-
sequence relations, and the Galois connections between spaces of valuations and spaces of
consequence relations. Some of what we present is known, and some even well-known; but
much is new. The aim is a systematic overview of a range of results applicable to nonre-
flexive and nontransitive logics, as well as more familiar logics. We conclude by considering
some connectives suggested by this approach.
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This paper considers some issues to do with valuational presentations of con-
sequence relations, and the Galois connections between spaces of valuations
and spaces of consequence relations. Our core inspirations are [33,49,50],
but we draw on a range of other work throughout. Some of what we present
is known, and some even well-known; but much is new.

Our aim is a systematic overview, so we do not spend time pursuing any
particular applications; but we have been brought to this work through its
applications. Thinking about semantic paradoxes has pushed one of us into
exploring nonreflexive logics [25], and the other into exploring nontransi-
tive logics [44,45]. So we are interested in adapting techniques developed for
exploring more familiar logics into these less familiar domains. But we will
not comment further in this paper on these background motivations. Our
aims here are simply to show that some familiar techniques indeed do gen-
eralize quite simply; applying (and interpreting) these techniques can come
elsewhere.

Here’s the plan. In Section 1, we introduce Galois connections between
sets of valuations and sets of arguments, and their associated closure opera-
tions, before setting out the particular Galois connections that stand at the
heart of the paper. In Section 2, we charactize the sets of arguments and sets
of valuations that are closed with regard to (the closure operations induced
by) these Galois connections, and briefly describe the lattice structures that
these closed sets inhabit. Finally, in Section 3, we consider the effects of
introducing vocabulary into our language that witnesses the structure of
the valuations in play.
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1. Arguments and Valuations

At the center of the valuational approach to consequence there are three
components: some set U of valuations, some set A of arguments, and a
binary counterexample relation % from U to 2.

Sometimes, both U and 2 are determined by some language L, with U set
to be 7% for some set 7 of values, and 2 set to be (L) x L, or P(L) x £(L),
or something of the kind. Indeed, this way of arriving at 2 and 2 will involve
us for the bulk of the paper, with a particular eye on four possible choices for
7. But just for now, let’s put off thinking about all this extra structure, and
see what comes simply from thinking in terms of counterexamples, without
any attention at all to what kinds of things arguments or valuations might
be.

On a standard way of thinking, which we will work with throughout, an
argument is wvalid iff it has no counterexamples. This means that each set
of valuations V' C U, together with some counterexample relation between
valuations and arguments, determines a set of arguments A(V) C 2 the
set of arguments that have no counterexamples in V. By the same lights,
although this is less frequently emphasized, each set of arguments A C
2, together with a counterexample relation, determines a set of valuations
V(A) C U: the set of valuations that are not a counterexample to any
argument in A.

This instantiates a general and well-explored structure: that of a Galois
connection. Whenever we have two sets S and T with a binary relation
R from S to T, this relation induces two functions f : P(S) — £(T) and
g :R(T) — R(S) as follows:

f(X)={teT:Vse X,sRt}
gY)={seS:VteY,sRt}

such that for all X C S and Y C T, we have X C g(Y) iff Y C f(X). This
last condition is the Galois condition, and any f, g satisfying this condition
are called a Galois connection between £(S) and £(T).! Galois connections

'An example due to [34, p. 4]: think of the relation “has visited” between people and
cities. Then for any set X of people, f(X) is the set of cities that all of them have visited
in common; and for any set Y of cities, g(Y) is the set of people that have visited all those
cities. So whenever X C g(Y), the people in X are among the people that have visited
every city in Y. Thus, Y C f(X); the cities in Y are among the cities that everyone in X
has visited. The converse follows similarly.
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provide a great deal of useful structure, and we will cite and exploit a range
of their properties in what follows.?

In the case of valuations and arguments, the key relation that fits this
form is the complement of the counterexample relation: the relation that
obtains between a valuation and an argument when the valuation is not a
counterexample to that argument.? So, for any sets V' of valuations and A
of arguments, we have V' C V(A) iff A C A(V): each is true iff nothing in V'
is a counterexample to anything in A. From this, all of the following follows:

THEOREM 1. (Galois facts) For any V,V' C 0 and A, A" C 2,
(i) if V C V', then A(V) 2 AV,

(i) if A C A, then V(A) D V(A'),

(iii) Vo A (henceforth, VA) is a closure operation on (R(0),

)
)
)
)
i)
)

N

)
AoV (henceforth, AV ) is a closure operation on (P(2), C),
(v) V(A) is closed wrt VA,

(vi) A(V) is closed wrt AV, and

(vii) A and V form an (order-inverting) isomorphism between the closed
elements of P(V) and the closed elements of £(2A).

PROOF. See for example [7,8,16,18,20,40].° [ |
Within U and 2, then, some subsets are distinguished by the Galois

connection. Some sets V' C U are closed: such that V' = VA(V). Since
VA is a closure operation, always V' C VA(V); what is special about closed

(iv

2The Galois condition makes sense if stated in terms of any partial order, not just C.
Also, Galois connections come in antitone and monotone versions; we are here using the
(original) antitone version. (The condition for the monotone version is that X < g(Y) iff
f(X) <Y.) These are essentially the same thing, however: a monotone Galois connection
between S and T is exactly an antitone Galois connection between .S and the order-dual
of T. For helpful discussion on this difference, see [18].

3We do not often concern ourselves with the questions: given this set of valuations,
which arguments are counterexampled by each valuation in the set? or given this set of
arguments, which valuations manage to be counterexamples to all of them? These are the
questions we would focus on if we applied this way of generating a Galois connection to
the counterexample relation itself, rather than its complement.

4A closure operation on a partially-ordered set (8, <) is an operation C such that for
every X,Y € §: 1) X < C(X); 2) if X <Y, then C(X) < C(Y); and 3) C(C(X)) < C(X).
(Equivalently, such that for every X,Y € §: X < C(Y) iff C(X) < C(Y).) An X € S is
closed wrt C iff X = C(X).

®But note that [16,20] use the monotone understanding of Galois connection rather
than the antitone one; recall Footnote 2.
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V is the inclusion in the other direction. A closed ¥ contains every valuation
compatible with everything in A(V'): adding any valuation to a closed V' that
it does not already contain would result in a ¥’ such that A(V') # A(V'). By
contrast, if V" is not closed there is some v ¢ V such that A(VU{v}) = A(V),
some way V' could be more inclusive without having any counterexamples
to any new arguments.

And all this plays out on the other side as well: some sets A C 2 are
closed: such that A = AV(A). Since AV is a closure operation, always A C
AV(A); what is special about closed A is the inclusion in the other direction.
A closed A contains every argument that lacks a counterexample in V(A):
adding any argument to a closed A that is does not already contain would
result in an A’ such that V(A) # V(A’). By contrast, if A is not closed there
is some a ¢ A such that V(A U {a}) = V(A), some way A could be more
inclusive without ruling out any additional valuations.

1.1. One Layer Down

All that is perfectly general. But when we apply these ideas to actual logical
situations, there is often more structure in play to take advantage of. By
making arguments more argumenty and valuations more valuationy, we get
more handles to grab on to. Importantly, this extra structure productively
interacts with the general background we have given above. In the remainder
of the paper, we follow the approach we briefly flagged earlier, of taking U
and 2 to each be determined from some underlying language L. For now,
we make no assumptions about any structure exhibited by £, considering
it merely as a set, and referring to its members as formulas. We make no
assumptions in general about the cardinality of £ (although see Fact 4 for
one place its cardinality can matter). We use ¢, w and the like for formulas,
and I', A, ¥ and the like for sets of formulas.

1.1.1. Eight Galois Connections Given this language, we consider two pos-
sible background sets 2 of arguments, and four possible background sets U
of valuations. (There is a sense in which we consider only one possible coun-
terexample relation, although it needs to be restated depending on which
set of arguments is in play.) Either of the sets of arguments can be Galois
connected to any of the sets of valuations, so this means we will be exploring
eight Galois connections.

On the argument side, we consider two different candidates for 2. The
first, the set of SET-SET arguments, is 2ss = (L) x £(L). These are argu-
ments with a set of premises and a set of conclusions. We write the SET-SET
argument (I', A) as [['>A], abbreviating in all kinds of usual sequent-calculus
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ways. The second, the set of SET-FMLA arguments, is sz = £(L) x L. These
are arguments with a set of premises and a single formulas as a conclusion.
We write the SET-FMLA argument (I, ¢) as [I" > ¢], again abbreviating in
all kinds of usual sequent-calculus ways. Note that there is no restriction to
finite arguments here; where sets of formulas are involved, they may be of
any cardinality that £ provides.

We refer to SET-FMLA and SET-SET as frameworks (following the usage
of that term in [34, pp. 103-112]), and do not mix them; when we speak
of a ‘set of arguments’ in the sequel, each such set should be taken to be
a subset either of Ags or Agr; and when we make reference to %A, this too
should be understood as one of s or Agp. (Sometimes we will mean one
or the other, and other times we are being deliberately neutral; we trust
context to clarify.)

There is an important (if kind of obvious) partial order C on arguments.

DEFINITION 1. For SET-SET arguments, [I'> A] C [IV > Al iff ' C T” and
A C A’; and for SET-FMLA arguments, [['>¢] C IV >y] iff I C I and
b=w.

On the valuational side, we begin with a familiar structure—but we
encourage you, at least for now, not to treat it as too familiar, since we’re
going to make use of it in what may be a less familiar way. The structure in
question is the set {T, L, T, x}, equipped with two partial orders C and <,
as depicted in Figure 1. We call the members of this set values.® We refer to
the order C as the information order, and to the order < as the truth order.

As this paper’s title suggests, we are not primarily concerned with values
but rather with valuations—functions from £ to values—and with various
kinds of valuations. We consider four candidate sets of valuations to fill in
the role of U. The first, the set of tetravaluations, is By = {T, L, I,*}ﬁ.
The second, the set of reflezive trivaluations, is U4 = {T, L, #}£. The third,
the set of transitive trivaluations, is 05 = {T, 1, T}*. And the final candi-
date, the set of bivaluations, is Vo = {T, L}*. Clearly U5, 0, C U,, and
Vo = V5 N VL7 In a context where we are discussing only a particular
one of these sets of valuations, ‘values’ should be understood as restricted

5Sometimes these values are denoted ‘I’, ‘F’, ‘B’, and ‘N’, as in [51]; and sometimes
they have other names, as in [46]. Here, we employ the notation of [10], with the addition
of ‘I’ for the value T.

It is not true, however, that 2, = 2% UD%: there are tetravaluations that use all four
values, and are thus neither kind of trivaluation.
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Figure 1. Two orders on values

to the corresponding values. When we make reference to 0, this should be
understood as one of these, or as neutral among them, according to context.

The partial orders C and < on values can be lifted pointwise to partial
orders on valuations: so for valuations u, v we have u C v iff for all ¢ € L,
u(¢) C v(¢), and similarly for <. It is customary to note that both C and <
are lattice orders on {T, L, T,x*}, and so our values so ordered form a (very
small) bilattice.® As a result, U, also forms a (much larger, depending on
|£]) bilattice under the lifted orders. We will make some use of this later in
the paper, but for now we simply note that this does not apply to our more
restricted sets of valuations: in particular, the lifted C fails to be a lattice
order on all of U4, W%, and Vs, and so the theory of bilattices is of more
limited use in exploring these restricted sets of valuations.

With this much in place, we can state the counterexample relation we
are interested in. This is the only candidate we will consider, and will form
the core of the investigations to follow:

DEFINITION 2. A valuation v is a counterezample to an argument a = [I'>-A]
(in the SET-FMLA framework a = [['> ¢])—written v % a—iff 0[I') C{T, T}
and v[A] C{L,T} (in the SET-FMLA framework v(¢) € {L,T}).

For bivaluations, this is completely usual: a counterexample assigns value
T to all premises and value | to all conclusions, with these the only two
values in play. However, when we move beyond bivaluations, there are other
possibilities: T plays the counterexampling roles of both T and L (hence the

8For more on lattices, see [16]. For more on bilattices, see Section 3, where we give
additional references.
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symbol T), and * provides a value that plays no role in counterexampling at
all.? In the terminology of, for example [53, p. 172], T and T are designated,
and 1 and T are antidesignated.

This is a natural notion of a counterexample to consider.'® To see this,
consider a different abstract approach to semantics, following [50, pp. 14ff,
28ff]. Instead of valuations, this approach uses pairs (T,U) with T,U C L;
we can say that (T,U) % [I' > A] (or (T, U) % ['>¢]) ff I CT and A CU
(alternatively, I' C T and ¢ € U). Shoesmith and Smiley [50] considers only
those pairs (T,U) with TNU = () and T UU = L, but this restriction
can be removed. If we do consider arbitrary pairs (T, U), then there are four
different statuses which a formula A could have wrt any such pair: it could be
in both T and U (alias v(A) = T), in neither T nor U (alias v(A) = ), only
in T (alias v(A) = T), or only in U (alias v(A) = L). On this approach,
we can see Uy as the set of all pairs; U4 as the set of pairs (T,U) with
T NU = 0; VY as the set of pairs (T,U) with T UU = L; and finally Us
as the set of pairs (T,U) with TNU = () and TUU = L. (Shoesmith and
Smiley [50], then, considers exactly Us, on this understanding.) Everything
we do with valuations, then, can just as easily be done with such pairs.

We now have enough on the table to generate the Galois connections we
are interested in, fitting our opening presentation. Given any set V' of valua-
tions (of any sort), we let Ags(V') be the set of SET-SET arguments with no
counterexample in V', and Ag:(V') be the set of SET-FMLA arguments with
no counterexample in . When we wish to remain framework-neutral, we
will speak of A(V'). Similarly, given any set A of arguments (in either frame-
work), we let V4(A) be the set of tetravaluations that do not counterexam-
ple any argument in A, with V5(A), V4(A), and V(A) similar for reflexive
trivaluations, transitive trivaluations, and bivaluations, respectively. Note
that, no matter what A is, V5(A) = V4(A) N Vf; V5(A) = Vi(A) NVY; and
V5(A) = V4(A) NYo. This leaves us with eight Galois connections, one for
each choice of framework and kind of valuation.

9The role of * is perhaps most familiar from ‘weak Schiitte valuations’, a special type
of reflexive trivaluation, discussed for example in [28, Ch. 3; 31]. The latter source also
considers ‘strong Schiitte valuations’, which emerge as a special type of transitive trivalua-
tion. (Hosli and Jager [31] uses the single symbol ‘u’ for both % and T, giving two different
understandings of what it is for a valuation to be a counterexample to an argument.)

YA related notion of consequence is explored in the FMLA-FMLA-fragment in [52,
Proposition 1]. The approach considered there involves a richer language than that which is
operative in most of the present paper, essentially amounting to the language of Section 3

containing only the truth-connectives A, v, and ~ (i.e. what in Section 3.4 is Ls for
S ={A,v,~}).
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This counterexample relation has particularly pleasant interactions with
the information order on valuations and the argument order. These interac-
tions will come in for heavy use in what follows:

Fact 1. For any arguments a, b and valuations v,w: if vk a and v C w and
b C a, then wxb.

ProoOF. Unpacking definitions. ]

1.1.2. Exact Counterexamples Among the valuations that serve as coun-
terexamples to an argument, some are what we will call exact.

DEFINITION 3. A valuation v is an ezact countererample to an argument
a—written vXa—iff for all arguments b € A, v % b iff b C a.

DEFINITION 4. A valuation v is targeted iff there is exactly one formula ¢
such that v(¢) € {L,T}; in such a case, v’s target is ¢.

Facrt 2. X is a biection between By and Uss, and between the targeted
tetravaluations and Agp.

PRrROOF. We cannot have vXa and vXb for a # b: in this case either a IZ b
or b IZ a. Wlog, suppose a [Z b; then since vXb we can conclude that v is
not even a counterexample to a, let alone an exact one. Similarly, we cannot
have uMa and vXa for u # v, since if u # v there must be some argument
counterexampled by one but not the other. So exact counterexampling is
one-one in both directions. It remains to show that it is total.

Ass: Given an argument a = [[' > A], let v(¢p) = T iff ¢ € I' N A; otherwise
Tiff ¢ € I' and L iff ¢ € A; otherwise *. Given a valuation v, let
a=1[{¢|v(p) e {T,I}}>{¢ | v(p) € {L,T}}]. Either way, cashing
out definitions reveals that vMa.

Asp: Given an argument a = [[' > y], let v(¢p) = T iff ¢ =y € T'; otherwise
T iff ¢ € I' and L iff ¢ = y; otherwise x. Note that v so defined is
always targeted. Given a targeted valuation v, let a = [{¢ | v(¢) €
{T.I}}>wy], where y is v’s target. Either way, cashing out definitions
reveals that vXa. m

In light of Fact 2, we refer a few times in what follows to ‘the exact coun-
terexample of @’ or ‘the argument exactly counterexampled by v’, intending
in each case to appeal to this bijection.
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2. Closed Sets

The Galois connection between sets of arguments and sets of valuations
gives a valuable tool for exploring both spaces and the relations between
them. It is particularly suited for exploring the closed sets of arguments and
valuations, since these are exactly those sets in the range of the functions
constituting the connection, and these functions give an (order-inverting)
isomorphism between the closed sets of arguments and the closed sets of
valuations.

However, it is important to remember that a set of arguments or val-
uations is closed only with respect to a particular Galois connection. For
example, there are sets of transitive trivaluations that are Vi Ag-closed but
not VyAgs-closed. (Indeed, no nonempty ViAgs-closed set of valuations is
V, Ags-closed, as we will implicitly see in footnote 13.)

Of course, there is an easy way to characterize those sets that are closed
wrt a particular Galois connection: just specify the Galois connection in
question and then say ‘closed’. But these Galois connections are of use, in
large part, because there are alternate characterizations of the closed sets
that are tractable in other ways. Here, we explore some of these alternate
characterizations.

2.1. Closed Sets of Arguments
DEFINITION 5. A set A of arguments is:
o reflexive iff for each ¢ € L, (SET-SET:) [¢p » ¢] € A, or (SET-FMLA:)
(o> ] € A;
e monotonic iff whenever a € A and a C b, then b € A;

e (SET-SET:) completely transitive iff for all ¥ C L, if for all ¥; U¥y =¥,
[X1,T > A,%5] € A, then [I'> A] € A; and

e (SET-FMLA:) completely transitive iff for all ¥ C L, if [I'> o] € A for
each 6 € ¥ and [X,'> ¢] € A, then [['> ¢] € A.

Reflexivity and complete transitivity are framework-dependent; they
come in different versions, each suited to be applied within a particular
framework.!! When we call a set of arguments ‘completely transitive’, then,

HTn the case of reflexivity, it causes no real trouble to ignore this. ‘Complete’ transitiv-
ity is so-called in order to distinguish it (or at least gesture at a distinction) from various
other transitivity-like properties a set of arguments might have. For partial exploration
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we always mean the version appropriate to the framework the set of argu-
ments works within.
These structural properties are the keys to closed sets of arguments.

THEOREM 2. A set of arguments is:

o AV, -closed iff it is monotonic,

o AVi-closed iff it is monotonic and reflexive,

o AVi-closed iff it is monotonic and completely transitive, and

o AVs-closed iff it is monotonic, reflexive, and completely transitive.

PROOF. Recall that A is closed iff A = AV(A). In each case, we proceed as
follows: by showing first that if A = A(V') for any set V of the appropriate
kind, then it has the needed structural properties, and showing second that
if A has the needed structural properties, then AV(A) C A. (For any set of
arguments A, we already have A C AV(A) by Theorem 1.)

Vs

LTR Suppose A = A(V) for any V C Uy, to show A is monotonic.
Suppose b ¢ A and a C b. Since b ¢ A(V), there must be some
v €V with vx b. But then v % a as well, and so a ¢ A either.

RTL SET-SET: Suppose A is monotonic, to show AV4(A) C A. Suppose
[['>A] ¢ A. Then it must be that there is no b € A with b T [['>A].
Let v be the exact counterexample of [I'> AJ; then for any argument
a, vxaiff a C [I'> A]. And we know there is no such a € A, so
vEVy(A). But vx [['> A], so [['> A] € AV4(A).
SET-FMLA: similar.

Vs
LTR Suppose A = A(V) for any V C 0%, to show A is monotonic and

reflexive. Since V' C Uy, it follows from the above that A is mono-
tonic. Since V' C U}, for any ¢ € L and v € V, v(¢p) € {T,L,*}.

Footnote 11 continued
of this space of properties (in both SET-FMLA and SET-SET frameworks, but assuming
monotonicity throughout), see [47].

The SET-FMLA form is exactly the property called ‘cut for sets’ for the SET-FMLA
framework in [50, p. 15]; the SET-SET form, however, is not the property called ‘cut for sets’
for the SET-SET framework on p. 29 there. Our version of the property is weaker. However,
it is equivalent to Shoesmith & Smiley’s property in the presence either of monotonicity
or of the property sometimes called ‘overlap’, which holds of a set of arguments iff it
contains every argument of the form [I',¢ > ¢, A]. (In the present setting, unlike some
others, monotonicity and overlap are independent of each other.)
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But in none of these three cases do we have v % [¢ > @], so A is
reflexive too.

RTL Suppose A is monotonic and reflexive. Then by the V,; case we
have AV4(A) C A. We claim V4(A) = Vi(A), from which we get
AVE(A) € A immediately. If our claim is wrong, there is some
v € Vi4(A) and ¢ € L with v(¢p) = I; but then v % [¢p > ¢] and so
(> ¢ & AV4(A). It follows that [¢p > ¢p] € A, and so A is not reflex-
ive, which contradicts our supposition.

SET-FMLA: similar.
Vs

LTR Suppose A = A(V) for some V C U}, to show A is monotonic and
completely transitive. Since V' C Uy, it follows from the above that
A is monotonic.

SET-SET: Suppose there is some v € V with v % [I' > A]. We must
then show that for any 3 C L, there are some X1 U Yo = X with
(X1, T > A, 3] & A(V). So take any ¥ C L, and let ¥1 = {¢ €
Yls.w(p) € {T,I}} and 33 = {¢ € X|s.v(¢p) € {L,T}}. Since V C

g, 21 U 22 = E, but v % [Zl,F%A,ZQ], SO [21,F>—A, 22] g A(V)
SET-FMLA: Suppose there is some v € V with v x [[' > ¢]. We must
then show that for any 3 C £, either [X,T'> @] € Ag:(V) or else for
some o € X, [['>o] & Ag(V). So take any ¥ C L; since V' C U
either v[X] C {T,T} or there is some ¢ € ¥ with v(s) € {L,T}.
In the first case, v % [E,T' > ¢], and so [E,T' > ¢] & Ag (V). In the
second case, v % [['> o], and so [I' > o] € A (V).

RTL SET-SET: Suppose that A is monotonic and completely transitive,
and [['> A] ¢ A. By complete transitivity (since £ C L), there are
some A; U Ay = £ such that [A1,T'> A, Ayl € A. Let O = Ay UT
and Oy = Ay U A, so [©1 > O3] is this same argument. Since A is
monotonic, there is no b C [© > O3] such that b € A. Let v be the
exact counterexample to [@1 > O3]. Note that since ©; U Oy = L,
we have v € U5.12 For any argument a, v % a iff a C [©1 > ©3]. And
we know there is no such a € A, so v € V4(A). But v % [I' » A, so
T A] ¢ A(V(4)).13

12Refer to the proof of fact 2.

13Unlike the V4 case, here it would in general be false to claim that Vi(A) = V5(A).
The trouble is that for any v € U5, there is some w ¢ U5 such that w C v. But as V4(A) is
always closed downwards along C (which we will see later), this means that the only sets
A for which V4(A) = V5(A) are those for which these sets of valuations are both empty.
This in turn is the case iff [~] € A, since every valuation is a counterexample to [-], and
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SET-FMLA: similar, but involving a bit more fuss. Suppose that A
is monotonic and completely transitive, and [[' > ¢| & A; we want
some v € Vi(A) with v x [I' > ¢]. It is determined as follows:

o v(y) =T iff [[>y] € 4,

e v(y)=Tiff [ T>y| & Aand y €T, and

e v(y)=Liff [ T>y| ¢ Aand y ¢TI
Clearly v € U%. Moreover, v % [I' > ¢|; v[I'] € {T,IL} by the first
two bullet points and v(¢) € { L, T} by the last two.
It remains to show that there is no [[V>y] € A with v% [I' >wy]. So
suppose v [[V>y], to show [[">y]| € A. Let © = I'V\T'. By the way
v was constructed, we must have [I'>y] ¢ A, and for each 6 € ©,
[['> 6] € A. So by the complete transitivity of A, [0, >y]| & A.
But since © UT' = IV UT, this means [I",T' >w]| € A, and thus by
monotonicity [I[ > y] & A.

Vo This case is well-known. See [50], Theorem 1.1 for the SET-FMLA case

and Theorem 2.1 for the SET-SET case. m

This leads us to an expanded version of what is known as ‘Suszko’s thesis’.

Say that a set V' of valuations is a presentation of a set A of arguments iff
A = A(V). Then one basic form of Suszko’s thesis is that every monotonic,
reflexive, and completely transitive set of arguments has a bivaluational
presentation (a presentation V' C 2Us). We have the materials here to go

farther:

COROLLARY 1. (Suszko)

Every monotonic set of arguments has a presentation V' C Uy.

Every monotonic and reflexive set of arguments has a presentation V. C

Every monotonic and completely transitive set of arguments has a pre-
sentation V' C 5.

Every monotonic, reflexive and completely transitive set of arguments
has a presentation V C Us.

Footnote 13 continued

U« (the valuation that assigns * to every sentence) is not a counterexample to any other
argument (in either framework). Assuming monotonicity as we have, then, means that the
claim would only be true when A is the set of all SET-SET arguments.
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PROOF. Let A be a set of arguments satisfying the structural properties in
question. By Theorem 2, A = AV(A), where V(A) picks out only valuations
of an appropriate sort. [

Theorem 2 and Corollary 1 thus generalize their well-known fourth parts,
dealing with bivaluations, to more general classes of valuations. For further
discussion of the special cases involving bivaluations, see for example [13,
36,38,48,54,55], and especially [49].14

Beyond the bivaluational case, these facts are are less well-studied.
Chemla et al. [14] is an interesting recent look at Suszko’s thesis that pushes
beyond the bivaluational case in a different kind of way than we have done
here. See [32, Prop. 2] for our SET-SET tetravaluational case, and the dis-
cussion there following this proposition for claims of the two SET-SET trival-
uational cases, including a comment covering much the same point as our
footnote 13. (The presentation there is different and slightly more general,
involving two languages rather than one, but the claims are essentially the
same when taken in their one-language special case.) The SET-SET trival-
uational claims are repeated, also without proof, in [46, fn. 13]. As far we
know, this is the first published proof of the SET-SET trivaluational claims.
We also believe this is the first statement of the SET-FMLA tetravaluational
claim, and of the SET-FMLA trivaluational claims.

There are results related to (the RTL directions of) the trivaluational
claims in [37, Thm. 3.2(i)] for SET-FMLA-U% and in [23, Thm. 5] for SET-
FMLA-D5. Those ideas are further explored in [11]. However, those results
do not involve a Galois connection at all, but instead exploit different
connections between valuations and arguments. The relation between that
approach and our own is interesting, and not completely straightforward,;
we discuss the situation in [26], but here simply pass over it without further
comment.

2.2. Closed Sets of Valuations

It’s now time to return to the bilattice structure of 2U,4. Each of C and <
is a complete lattice order on Uy; every set V of tetravaluations has an
information meet [ |V, an information join | |V, a truth meet \ V, and a
truth join Y V. Moreover, this gives what Fitting [22] calls an interlaced

“Wansing and Shramko [56, Theorem 4.1] contradicts this fourth part, claiming (in
effect) that in the SET-FMLA case it suffices that the set contain all arguments of the
form [I', A> A]. (This is a stronger constraint than reflexivity, but weaker than reflexivity
plus monotonicity, and it makes no provision at all for complete transitivity.) This error
is corrected in [57].
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bilattice: each pair of lattice operators preserves not only the corresponding
order (as any lattice operators must), but also the other order.'®

As we briefly noted in Section 1.1, this bilattice structure does not extend
to our smaller background sets of valuations: % is not closed under | | (since
1L UT =T); Vs is not closed under [] (since LM T = x); and Vs is not
closed under either | | or []. All these sets are closed under both A\ and Y,
however; and for now, it is A that is of most concern.

THEOREM 3. A set V' of valuations (considered as part of any of our four
possible B, so long as V C Y) is:

o VAy-closed iff it is closed downwards along C, and

o VAgp-closed iff it is closed downwards along T and closed under \s.

PRrROOF. Recall that V is closed iff V' = VA(V). In each case, we proceed by
showing first that if V' = V(A) for any set A of arguments in the appropriate
framework, then it has the properties in question, and showing second that if
V has the needed properties, then VA(V') C V. (For any set V' of valuations,
we already have V' C VA(V) by Theorem 1.)

V Ass

LTR Suppose V = V(A) for some A C 2, to show that V is closed
downwards along C. Let w be a valuation of the appropriate kind
such that w ¢ V and w C v. Since w ¢ V(A) and w is of the
appropriate kind, there must be some a € A with w % a. By Fact 1,
vxa as well. So v & V(A).

RTL Suppose V is closed downwards along C. Take any v of the appro-
priate kind such that v € V', to show v € V. Ag(V). Consider the
argument a exactly counterexampled by v. For any w, w % a iff
v C w. As v € V, v is of the appropriate kind, and V is closed

downwards along C, no such w is in V. But then a € Ag (V). Since
v % a, then, v & VAg(V).

LTR Suppose V = V(A) for some A C g, to show that V is closed
downwards along C and closed under \. Showing that V is closed
downwards along C is exactly the same as in the SET-SET case,
since Fact 1 applies equally to both frameworks.

5Fitting [22, p. 96] points out that our bilattice on values is interlaced; it follows from
this and Proposition 3.2 there that our bilattice on valuations is also interlaced.



Valuations: Bi, Tri, and Tetra

Suppose, then, that V is not closed under As; that there is some w
of the appropriate kind such that w = A, v; with v; € V(A) for all
i€l,but w¢ V(A). Since w € V(A), but w is of the appropriate
kind, there must be some [I'> ¢| € A with w % [I' > ¢]. And since
vi € V(A) foralli € I, thereisnoi € I with v;%[I'>¢]. This is to say
that for every i € I, either there is some y € I" with v;(y) € {L,*}
or else v;(¢p) € {T,x*}.

Since wx [['>¢], it must be that w(¢) € {L,T}; if v;(¢p) € {T,*}
for every i € I this is not possible, since {T,*} is closed under A.
So at least some i € I gives v;(y) € {L,*} for some y € I'. But then
w(y) € {L,*} as well, and so w cannot be a counterexample to a.
Contradiction.

RTL Suppose V is closed downwards along C and closed under As. Take
any w € VAg(V), to show w e V. Let I' = {y : w(y) € {T,T}},
and consider all the ¢ such that wx[I'>¢]; let these be {¢;}icr. Since
w e VA(V), all such [I' > ¢;] & Age(V), so for each i € I there is
some v; € V such that v; % [I'>¢;]. We claim that w E A, v;; from
this it follows that w € V, since V is closed under A\ and downwards
along C.

To see this, consider any w € £, to show that w(y) & A;c; vi(y).
There are four cases, depending on w(y):
e w(y)=T.Theny €', sov;(y) € {T,I} foreachj e I, and
so Ny vilw) € {T, I}
e w(y) = L. Then again y € I', so v;(y) € {T,I} for each
j€lI,andso \;c;vi(w) € {T,T}. But now wx [I'>w], so y
is ¢; for some j € I, and so v;(w) = T. Thus, A, vi(w) = T.
e w(y) = L. In this case, wx [['>y], so y = ¢; for some j. But
then v;(y) € {L,T}.
e w(y) = *. Since * C e for all values e, in this case we’re done.

Theorem 3 gives us a way to see which sets of valuations are closed. As
with Theorem 2, the bivaluational case is known—but it is less well-known.
See [19, p. 202] for a helpful ‘Historical Remark’ on the bivaluational SET-
SET case, which is to be found here and there in the literature. Less well-
known still is the bivaluational SET-FMLA case; but see [30]; [33, Thm. 0.2.5];
[34, Thm. 1.14.9], as well as the works cited at [34, p. 101]. Importantly,
when v, w are bivaluations, v C w iff v = w; this means that every set
of bivaluations is Vo Ay closed. As a result, these facts often sound very
different when discussion is restricted to bivaluations (as it almost always
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is). There is no need at all in such settings to think about the information
order.

For the tetravaluational SET-SET case, see [46, Fact 8]. Compare also [37,
Thms. 3.2(ii) and 4.1], which contain facts reminiscent of the SET-FMLA-
U, case here. (Malinowski’s M is exactly our A (restricted to transitive
trivaluations), but he does not address the question of closure in our sense.)

Digression: Other Frameworks. We pause at this point to briefly men-
tion some counterparts of the above results for less well studied logical
frameworks—in particular FMLA-SET and FMLA-FMLA. (We take up the
notation Apg, App, Aps, and Ay, all with the obvious meanings, in this digres-
sion.) Our primary reason to discuss these frameworks is to bring out certain
symmetries in the above results, illustrating the connections between frame-
works and the closure of classes of valuations under truth meets and truth
joins. That being said, these frameworks have recieved a limited amount
of attention in the literature. Interest in the FMLA-FMLA framework has
come from work connected to algebraic logic (see, for example, [34, pp.
246-248] for a discussion of the logic of distributive lattices, and [29] for a
discussion of the logic of orthomodular lattices), as well as work connected
to sublogics of intuitionistic logic such as the basic propositional logic of
[1].16 The FMLA-SET framework has primarily been studied in connection
to vagueness, where it is used to bring out certain structural features of
subvaluational approaches—concerning which the interested reader should
consult [15] for a survey of some of the logical developments.

The bivaluational case of Theorem 4 is mentioned in passing in [35, fn. 7];
we know of no discussion of the other cases of this result, or of Theorem 5.

THEOREM 4. A set V of valuations (considered as part of any of our four
possible U, so long as V C U) is V. Aps-closed iff it is closed downwards along
C and closed under Y s.

PROOF. As the case of SET-FMLA and SET-SET above, we proceed by show-
ing first that if ¥V = V(A) for any set of FMLA-SET arguments A, then it
is closed downwards along C and closed under Y, and secondly that if V' is
closed under these properties then V(Aw(V)) C V.

LTR Suppose V = V(A) for some A C g, to show that V is closed down-
wards along C and closed under Y's. That V is closed downwards along
C is exactly as in the SET-SET and SET-FMLA cases above.

'S Dunn and Hardegree [19, pp. 191-194] is a brief introductory discussion of the
FMmLA-FMLA framework.
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Suppose, then, that V is not closed under Y's. Then there is some w
of the appropriate kind such that w = Y, , v; with v; € V(A) for all
i € I, but that w & V(A). Since w ¢ V(A), but w is of the appropriate
kind, there must be some [¢p > A] € A with w % [¢ > A]. And since
vi € V(A) for all i € I, there is no i € I with v; % [¢p > A]. That is to
say, for every i € I, either v;(¢) € {_L,*}, or else for all 6 € A we have
vi(6) € {T,x}.

Since w % [¢p > Al, it must be that w(¢) € {T,L}; if vi(¢p) € {L,*}
for every i € I this is not possible, since {L,x*} is closed under Y.
So at least some i € I gives v;(6) € {T,=} for some § € A. But then
w(6) € {T,x} as well, and so w cannot be a counterexample to [¢p>A].
Contradiction.

RTL Suppose that V is closed downwards along C and closed under Ys.
Take any w € VAus(V), toshow w € V. Let A = {y : w(y) € {L,T}},
and consider all the ¢ such that wx [¢p>A]; let these be {¢;}ics. Since
w € VA(V), all such [¢p > A] & Aw(V), so for each i € I there is
some v; € V such that v; % [¢; > A]l. We claim w C Y, v;; from this
it follows that w € V, since V is closed under Y and downwards along
C.

To see this, consider any y € L, to show that w(y) C Y., vi(w).
There are four cases, depending on w(y):

e w(y) = T. Then we have w % [y > A], so y = ¢; for some j € I,
and so A;c, vi(w) € {T,T}.

e w(y) = T. Then again we have w x [y > A], so w = ¢; for some
j €I, and so A\;c;vi(w) € {T,IT}. As w(y) = T, though, we
also ahve y € A, and so v;(y) € {L, I} for all j € I, and so
Aie[ vi(y) = T.

e w(y) = L. In this case y € A, so v;(y) € {L,I} forall j €1,

and so A;c; vi(w) € {1, T}
e w(y) = *. Since x C o for all values o, in this case we’re done. m

The situation is similar for the FMLA-FMLA framework:

THEOREM 5. A set V' of valuations (considered as part of any of our four
possible B, so long as V' C B) is V App-closed iff it is closed downwards
along C, closed under \s, and closed under Y's.
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PROOF.

LTR Suppose that V' = V(A) for some collection A C 2y, to show that V'

RTL

is closed downwards along C, and closed under As and Ys. That V is
closed downwards along C is just as before.

To see that V(A) is closed under Y's, suppose w = Y, ,; v; and w ¢
V(A) (with w and all v; of the appropriate kind), to show that there
is some v; ¢ V(A). Since w ¢ V(A), but w is of the appropriate kind,
there must be some [¢p>y]| € A with wx [p>y]. As wx [p>y], it must
be that w(¢) € {T, L}, and so there is some v; with v;(¢p) € {T,TL}; let
this be v;. But also as wx[¢>y], it must be that w(y) € {L, T}, and so
there must be no v; with v;(y) € {T,x}; in particular, v;(w) & {T, x}.
Thus, v;(y) € {L, T}, and so v; % [¢p > y]. Thus v; & V(A).

To see that V(A) is closed under As, repeat the previous paragraph
while standing on your (truth) head.

Suppose that V' meets the needed closure conditions, and take some
w € VA (V), to show w e V.

Let {¢ihier = {® | w(e) € {T.T}}, and let {y;},es = {w | w(w) €
{L,T}}. Since w % [¢; > y;] for each i € I,j € J, we know that no
such argument is in A (V); thus, for each i € I,j € J there is some
Vjj € V with Vjj X [¢1 > l[/j]

We claim that w T Y,c; A;c; vy it follows that w € V' by the
closure conditions. To verify the claim, consider any y € L; we show

that w(y) C |:Yi€1 Ajes UU} (x). Here there are four cases:

e w(y)=T. Then y = ¢ for some k € I. As each vy; x [y > ;] it
follows that vy;(y) € {T,I} for each j € J; so [AjeJ vii| (x) €

{T,I}; and so [Y,EI Njes vi,} (x) €{T,I} as well.
e w(y) = L. Then y = yy for some k € J. As each vy % [¢p; > x|

it follows that vy (y) € {L, T} for each i € I; so [AJEJ vij| (x) €
{L,T} for each i € I, and so [Yie, Njes U,-J} (x) € {L,I} as

well.
e w(y)=T.Then y = ¢y for some k, and y = y; for some /. Thus,
for all j € J, vg;(x) € {T,I}, and in particular vy (y) = I. As

a result, | A ;c; vkj| (x) = I. Moreover, for every i € I, we must
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have vy(y) € {L, I}, and so [AjEJ U,'j:| (x) € {L,I} for every
i € 1. As aresult, [Yiel Ajes v,-j} (x)="T.

e w(y) = x*. Since * C o for all values e, in this case we’re done. m

2.3. Lattices of Closed Sets

So far, we've got eight Galois connections in play. Each of these, simply by
being a Galois connection, restricts to an order-inverting order-isomorphism
between closed sets, considered as ordered by C. This section explores these
eight orders.

2.3.1. Complete Lattices The first thing to note is that all eight are com-
plete lattice orders.!” Given any closed sets {A;}ic; of arguments, (.., A;
is also closed, and is clearly the greatest lower bound of the A;s.

Least upper bounds also exist, but the situation is slightly more complex.
For any closed sets {A;}ic; of arguments, (J;o; A; exists, but it need not
always be closed. Here the situation depends on which Galois connection we
are considering.

So long as the set of valuations in play is U, unions of closed sets of argu-
ments are indeed always closed. This is because closed sets of arguments need
obey only monotonicity, and this is preserved by unions, essentially because
monotonicity is a one-premise rule. However, when we consider narrower
sets of valuations, we impose more restrictions on closed sets of arguments,
and sets of arguments meeting these restrictions need not be closed under
unions. For the case of U%, this is perhaps not obvious, but consider the
empty union: it is the empty set of arguments, and this is certainly not reflex-
ve.'® (The reflexive sets of arguments are, however, closed under nonempty
unions, essentially because reflexivity is a zero-premise rule.)

So to arrive at least upper bounds, simply taking the union of closed
sets of arguments does not suffice. We need instead, for closed sets {A,}icr,
to consider AV(|J;c; Ai). In the cases where |J,.; 4; is already closed, this
makes no difference; but in other cases it does. Anyhow, it is this closed

iel

"Wéjcicki [58, Corollary 1.5.4] points this out for the case of SET-FMLA arguments
and bivaluations.

'8This contradicts the final claim in the statement of [24, Fact 2.1], which concerns
itself with the lattice of reflexive and monotonic sets of SET-FMLA arguments—which is
to say, SET-FMLA-U5. This claims that the least upper bound of a set of such sets is its
union; but this is only true for the nonempty sets of such sets. The least upper bound of
the empty set of such sets is the smallest reflexive set, not the empty set.
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union that gives least upper bounds in any of our eight orders. (This follows
directly from properties of | together with the fact that AV is a closure.)

Since the eight orders on closed sets of arguments are all complete lattices,
so too are the eight orders on closed sets of valuations. After all, these are
isomorphic! But it is useful to check in anyhow, to see where meets and joins
among closed sets of valuations do and do not coincide with set-theoretic
intersections and unions.

Here, the question turns on which framework is in play. If we are working
in SET-SET, then the closed sets of valuations (which need only be closed
downwards along C) are closed under both intersections and unions, essen-
tially because downward closure is a one-premise rule.

But if we are working in SET-FMLA, this need not be the case: the addi-
tional requirement that closed sets be closed under As can matter. While
intersections of collections of closed sets of valuations are indeed always
closed, unions need not be. Let v+ be the valuation that assigns a T to
every formula; this is in Us, and so is in play no matter which background
set of valuations we work with. Since \ # = v, when we work in the SET-
FMLA framework v is in every closed set of valuations. But |J0 = 0; the
union of the empty set of closed sets of valuations is not closed. So to arrive
at least upper bounds in the C order on closed sets of valuations, we need
in general to consider VA(|J), not just |J.

2.3.2. Distributivity This is enough to see that five of our eight lattices are
distributive. First, any of the four lattices involving the SET-SET framework
must be completely distributive, since on the valuational side their meets
and joins are simply set-theoretic intersections and unions, and these are
indeed completely distributive. Second, either of the two lattices involving
the full set U, of tetravaluations must be completely distributive, since on
the argument side their meets and joins are simply set-theoretic intersections
and unions. Since one of our lattices involves both the SET-SET framework
and U, this gives us four plus two is five.

What about the other three? These all involve the SET-FMLA framework,
and concern its connections to U4, V%, and Vs. For one of these, we again
have complete distributivity.'?

Fact 3. The lattice of closed sets formed by the SET-FMLA framework and
5 15 completely distributive.

19See also [24, Fact 2.1] for completeness and distributivity—but not for complete
distributivity—of this case. Note, though, that this is the Fact containing the error
explained in footnote 18.
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PRrROOF. Let R = {[¢p> ¢||¢p € L}, and call a set B of arguments irreflezive
iff BN R = (. Call a set B of arguments partially monotonic iff BU R is
monotonic. That is, a partially monotonic set is basically monotonic, except
it does not need to contain the arguments in R, even if monotonicity would
require them.

The set of irreflexive and partially monotonic sets of arguments is not
of much independent interest (which is why these terms are defined only
internally to this proof), but it is isomorphic to the set of closed sets of
arguments. Each closed set A determines an irreflexive and partially mono-
tonic set A\ R, and each irreflexive and partially monotonic set B determines
a closed set BU R. Moreover, these determinations are mutually inverse and
order-preserving. (For them to be mutually inverse, it is important that
R C A for each closed A.)

The set of irreflexive and partially monotonic sets of arguments, more-
over, is closed under arbitrary unions and intersections. For example, the
empty union determines the empty set of arguments, and the empty set is
indeed irreflexive and partially monotonic. (Indeed, it is monotonic.) So C
on this set forms a completely distributive lattice order. But we have already
seen that this set is isomorphic to the set of closed sets of arguments; so that
lattice too is completely distributive. [

This leaves U4 and Us,. By contrast with the other six cases, these are
not even distributive, let alone completely so, at least if our language has a
reasonable size.

Fact 4. If |L]| > 3, the lattices of closed sets formed by the SET-FMLA
framework and VY or Wy are not distributive.

PRrROOF. In what follows, we show that the well-known lattice M3 is a sub-
lattice of each of these lattices; this suffices for nondistributivity.?°

Let A be the smallest set of arguments that is reflexive, monotonic, and
completely transitive. (That is, [['> ¢] € A iff ¢ € I'.) Consider three
distinct formulas y; for i € {0,1,2}.2! For the remainder of the proof, let
2+ 1 = 0, for convenience.?? For i € {0,1,2}, let A; be AU{[l>y;] | T C
LYU{[T,piz1> @] | TU{@p} C L}. That is, A; includes the arguments in A,
plus all arguments with y; as their conclusion, plus all arguments with y;41
among their premises.

2OFor what M3 is and why this works, see [16, Ch. 4].
2! Note that this is the first place £’s cardinality has mattered, for any of our results.

22 All we really need is some permutation on {wo, w1, w2 }; we will use +1 to indicate it.
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Each such A; is closed. Reflexivity and monotonicity are immediate. For
complete transitivity, suppose [I'>o] € A; for each 6 € ¥ and [E,T'>¢] € 4;,
to show [['>¢| € A;. If wiy1 € T or ¢ = y;, then [['> @] € A; directly, so
we can assume neither of these is the case. Now, since for each ¢ € ¥ we
have [I'> 6| € A;, and since y; 11 € ', we have ¥ C I' U {y;}. Thus, since
[X,T > ¢] € A, also [I',y; > ¢] € A;. But this argument does not have ;41
among its premises, so we must have ¢ € I' U {y;}. Since we have ¢ # y;,
this gives ¢ € I". So [['> ¢p] € A;.

Let i # j € {0,1,2}. Then A; € A;. Moreover, A;NA; = A; any argument
added to A in any A; is not added by either of the others. Finally, AV(A;UA;)
is Agp. This is because for any such i, j, either i = j+1 or j = i+ 1. Wlog, let
it be the former. Then for any I, ¢, we have [['>y;| € A; and [I', y;>¢] € A;.
Closing A;UA; under complete transitivity, then, gives [['>¢] € AV(A;UA;).

The facts adduced in the last paragraph, though, mean that the lattice
in question contains three incomparable elements (the A;s) any two of which
have a common meet (A) and any two of which have a common join ().
This is the nondistributive M3, here found as a sublattice of our lattices,
which are thereby themselves nondistributive. [

3. Adding to the Language

In this final section, we consider the effects of adding connectives to the
language. We use the bilattice structure present in our valuations to provide
these connectives. With £ and U4 as before, we form the extended language
L. This treats formulas in £ as ‘atoms’, and constructs complex formulas by
way of new connectives. £ has the full complement of of zeroary connectives
T, 1, T, *, unary connectives ~ and —, and binary connectives A, v,[I7,Ll; it
is the full language. From here, we use ¢, y, etc, for arbitrary formulas in
Ly.

We assume all valuations treat all these connectives appropriately. That
is, for any v, v(I) = I, v(¢p A ) = v(¢h) A v(y), and so on. The only
connectives requiring remark here are the two negations. Truth negation ~
swaps T and 1 while leaving T and x* fixed; and information negation —
does the opposite, swapping I and * while leaving T and L fixed.??

2Information negation is called ‘conflation’ in [21,22]. This is an unfortunate name: it
is a unary operation, but one conflates multiple things. (Indeed, it is M that is most closely
related to conflation, at least if [46] is broadly on the right track.) So we avoid Fitting’s
terminology here.
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In exploring £, we consider only sets of tetravaluations, rather than
maintaining our four distinct background sets of valuations. This is because
the constants T and * force all valuations to use the values T and *. Even
without these constants, we have T M 1 = x and T LU 1 = T, so even
bivaluations end up using all four values. Restricting ourselves to U, Uk,
or U4, then, would amount to imposing special requirements on formulas in
L not obeyed by the remainder of the language.

3.1. (Information) Monotonicity

In the presence of these additional connectives, it is no longer a matter of
definition that whenever u C v, then u(¢) C v(¢) for every formula ¢. The
former claim is defined as before, by looking at all formulas in £. But we
have new formulas now to be checked in the latter claim. The claim now
holds only in a restricted form; — causes trouble for it.

Fact 5. If u C v, then u(¢p) C v(¢) for any formula ¢ not containing —.

PRrROOF. For atoms, the result follows by definition. For the inductive step,
the constants (whichever are present) are immediate; it remains to check
unary and binary connectives. Here, though, all of our connectives but —
preserve the C order; ~ directly, Ll and M as lattice operations in the C
lattice, and v and A because our bilattice is interlaced. [

Because Fact 5 does not hold in full generality, we do not have for £ a
fact corresponding to Fact 1. This turns out to create complications in the
coming sequent calculus for £,. Moreover, if we think of C as really telling
us something about information, then operations that fail to preserve it
can easily seem nonsensical.>* So we also consider £, which contains all
the connectives of £ except —. Since every connective of L is information
monotonic, so is each of its formulas; the restriction in Fact 5 is no restriction
at all for £, which does not contain — in the first place.

For a language like this, these valuations are well-studied, both with the
full complement of operations in £, and with the restricted complement of
operations in L. (It is perhaps even better-studied still if we ignore the
information connectives entirely and stick only to the truth connectives;
in this form it is studied, for example, in [5,6,17], [42, Ch. 3]. We do not
consider this possibility here, though.) See, for example, [2,4,12,21,22,27].
In particular, it is worth noting that £, is functionally complete: every

2 For discussion, see [9,10,43].
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operation on {1, T,T,x*}, of any arity, is definable in £,. Moreover, every
information monotonic operation of any arity is definable in £¢.?

However, where these structures have been connected to consequence
relations, it is typically in ways other than the way we have chosen here. For
example, [2, Def. 3.2a] have (in our notation, not theirs) that v x [I" > A] iff
v[['] €{T,I} and v[A] C {L,«}. This definition comes apart from ours in
having {L,=} as the key counterexample values for conclusions, instead of
our {L,T}. As a result, if v(¢p) = v(w) = I, then v is a counterexample in
our sense but not theirs to [¢p>y]; and if v(¢p) = T and v(y) = *, then v is a
counterexample in their sense but not ours. The same kind of thing happens
for other well-known counterexample relations involving these and similar
valuations. So while the valuations themselves are well-known, nonetheless
the results to follow are novel (as far as we know), since they rely on the
particular counterexample relation we study in this paper, which is not a
usual one for these valuations.

3.2.  Sequent Calculi

We present a systematic way to give a sequent system for Ag (V) for V' C
U,. (This covers corresponding questions about Ag:(V) for such V', since
each SET-FMLA argument has a corresponding singleton-conclusion SET-
SET argument.)

The objects manipulated in these calculi are the arguments themselves.
We begin with a system just for £, given in Figure 2. The rules for the
truth connectives in this system are familiar; they are typical rules for the
corresponding connectives of classical logic. (Indeed, by taking 0% as the
background set V', fixing the initial sequents, the truth rules give exactly
classical logic for the truth vocabulary.) The informational rules, however,
are different, involving hybrids of more familiar classical rules. For example,
M has the left rule of A and the right rule of v; while LI has the left rule of
v and the right rule of A. Continuing this pattern, x has the left rule of L
and the right rule of T; while I, in a kind of degenerate way, has the left
rule of T and the right rule of 1.26

ZFor both results, see [39, pp. 49-50]. Thanks to José Martinez for providing this
reference, as well as providing (p.c.) a different proof of the latter claim.

26Similar behaviour reveals itself in the proof system for £ given in [2, p. 37ff], but in
a different way. Recall that their notion of v being a counterexample to [['>A], differs from
ours in requiring v[I'] C {T,I} and v[A] C {L,«}. This leads to a range of differences
in presentation. In particular, for their notion of validity the connectives need separate
rules for when they occur on their own and when they occur embedded under ~. (This is
because ~ does not simply switch sides for their notion of validity, as it does for ours.) So
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INITIAL SEQUENTS FROM L
As initial sequents, take all [['> A] € A(V)withTUA C L.

STRUCTURAL RULE

[T > Al
[.T > A, A']
TRUTH RULES
1L: [J_ N ] TR: [ . T]
A > A, ¢] [T Al
[~ T A R > A, ~]
L lgwr>al LN I YN
T [pAw, T A] ' [T>A,¢pAw]
" [¢, T > A] [y, > A] . [T>-A, ¢, v]
‘ [@Yy,I'>-A] A vyl

INFORMATIONAL RULES

L [* . ] *R: [ . *]
L [¢,y, T > A] R [['>-A, ¢, y]
" [Ny, > A] T[> A 9Ny

[, T > A] [y, I'> A] " [[">- A, @] [I'>- A, y]

- [pLy.T > Al He [T> A, Lyl

Figure 2. Sequents for L

Unfortunately, adding — to this system is not simply a matter of adding
a left rule and a right rule. Instead, we look one connective down, adding
rules that govern the interaction of — with each other connective. These
rules are thus much like the rules given in [3,41] for the logic FDE, or the
rules discussed in footnote 26 for the truth vocabulary. (See also [2, p. 39] for
rules for — that take a similar strategy.) We also add new initial sequents,
recording —’s behaviour as applied directly to formulas of L.

Footnote 26 continued
while we have, for example, M with the left rule of A and the right rule of v, they have M
with the unembedded rules of A and the under-~ rules of v.
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INITIAL SEQUENTS FOR LITERALS

As initial sequents, take all [['>- Al € A(V)withTUA C LU-L.

-1 RULES

—1L: [—|J_ N ] -TR: [ . _|_|_] -IL: [“I N ] [ . —|I]

_ [T> A, =¢] [T A
T [, T A o [T> A, ~~¢]
L el e TrAsgl T Ay

© (¢ Aw).T> Al ' [T> A, ~(p A )]
L T-AL DAl T Ay

‘ [~(¢ ¥ w), T > Al LA (g V)]

[m¢, >~ A] [—y, >~ A] [T > A, —¢] > A, ~y]

=nL:

—UL:

[(@ny),T'>-A]

[=, ~w,T'>- A]
[(@uw),I'>-A]

[¢,T > A]
[7m¢, T~ A]

—rR:

—LR:

[[>-A,~(¢pny)]

[T'>-A,~¢,~y]
> A, ~(puy)]

"> A, @]
[T'>- A, ==g]

Figure 3. Extra rules for -

The needed rules are in Figure 3; combining these rules with those from
Figure 2 gives our calculus for £,. Comparing the rules in Figure 2 for each
monotonic connective on its own with the rules for its interaction with — in
Figure 3 reveals a pattern: — is in a sense transparent to the truth connec-
tives, which continue to obey essentially the same rules as in unembedded
occurrences, simply passing the — up from their subformulas; and — reverses
the information connectives, trading M for LI and T for *, and vice versa.

3.3. Soundness and Partial Completeness

Here, we discuss the full proof system for £, involving all initial sequents
and rules from both Figures 2 and 3. (We will return to the system of Figure
2 alone for L presently.)

THEOREM 6. Given V C Uy, if [I' > A] is derivable in the above calculus
(with initial sequents sensitive to V'), then [I' > A] € Ag(V).
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PrROOF. This is as usual for a soundness proof: the initial sequents are
all in Ag(V), and each rule preserves this property. We can be confident
that each rule preserves this property regardless of the choice of V' because
each rule is locally sound: any valuation that is a counterexample to the
conclusion-sequent of an application any rule is itself a counterexample to
some premise-sequent of that application of the rule. [

Unfortunately, as we will show in a moment, this system is not complete.
However, it is complete for an important class of arguments: the connective-
finite arguments.

DEFINITION 6. An argument [I'>A] is connective-finite iff (TUA)\ (LU-L)
is finite.

The connective-finite arguments are those that contain only a finite num-
ber of connectives, as a connective-finite argument has only finitely many
formulas containing connectives (with — applied directly to members of £
not counting), each of which contain only finitely many connectives. It is also
worth noting that the sequent system in question can only derive connective-
finite sequents: all initial sequents are connective-finite, and all rules preserve
connective-finitude.

THEOREM 7. This sequent system is complete for connective-finite argu-
ments: every connective-finite [I' » A] € Ags(V') has a derivation in this
calculus (with initial sequents sensitive to V).

PROOF. Build a reduction tree in the usual way from any such sequent
[To > Ag], by running the rules of the proof system backwards, and closing
any branch if it reaches a sequent that can be derived from an initial sequent
by an application of the dilution rule D. If it closes, the result is (near enough,
modulo the just-mentioned applications of dilution) a derivation of [T'g> Ag].
So suppose it has an open completed branch. Take the leaf sequent of the
branch; let this be [I' > A]. We give a valuation v € V' with v % [ > A].
For any ¢ € L, set v(¢) as follows:

if ¢ €T, then v(¢p) € {T,TL},

if ¢ € A, then v(¢p) € {L, T},
if = € T, then v(¢p) € {T, *},
if =¢ € A, then v(¢) € {L,*}.
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Because of our initial sequents for literals, we can be sure there is such a
v € V; if there were not, the branch would have closed.?”

We want to show that the clauses specified above for ¢p € £ extend to the
full language; they hold for all ¢ € £ . If this is so, we have (by the first two
clauses) v % [T > A]; since [[g > Ag] C [T > A], it follows that v % [['g > Ag],
and we’re done.

BASkE cASE: The atoms are all set, since they were taken care of in the
specification of v.

ConsTANTS: Informational: we need to be sure that neither x nor =T
appears in 'UA, since this would violate our clauses. Initial sequents among
the informational rules take care of this. Truth: we need to be sure that
neither 1 nor —L isin I', and that neither T nor =T is in A. Initial sequents
among the truth and interaction rules take care of this.

BINARY CONNECTIVES: For A:if ¢ A w € ', then ¢,y € I' by construc-
tion. By the inductive hypothesis, v(¢),v(w) € {T,L}; and so v(¢p A y) €
{T,I} as well. If ¢ A w € A, then either ¢ € A or y € A by construction.
By the inductive hypothesis, either v(¢) € {L, T} or v(y) € {L,T}. Either
way, v(p Ay) € {L,T}. If =(¢p A w) €T, then —¢p, ~yw € T', and the rest is
similar to the ¢ A y case. If =(¢p A w) € A, then either ~¢p € A or =y € A,
and the rest is similar to the ¢ A y case.

For v: just as for A.

For m: if ¢ My € I', then ¢,y € I' by construction. By the induction
hypothesis, v(¢), v(y) € {T,I}; hence v(¢p My) € {T,I}. The case where
¢My € A is similar. Now, if =(¢My) € T, then either ~¢p € T or ~y € T by
construction. By the induction hypothesis, either v(¢) € {T,x} or v(y) €
{T,*}. Either way, v(¢p My) € {T,*}, and hence v(=(¢pMy)) € {T,*}. The
case where ~(¢ My) € A is similar.

For L: just as for M.

UNARY CONNECTIVES: For ~: if ~¢ € T', then ¢ € A by construction. By
the inductive hypothesis, v(¢) € {L, T}, and so v(~¢) € {T,L}. If ~p € A,
then ¢ € T' by construction. By the inductive hypothesis, v(¢) € {T,T},
and so v(~¢) € { L, T}. If -~¢ € T', then —¢ € A by construction, and the
rest is like the ~¢ case. If -~¢ € A, then —¢ € I" by construction, and the
rest is like the ~¢ case.

2"This is where the restriction to connective-finite sequents is needed. Without such
a restriction, we would potentially have an infinite open branch; it would then have no
leaf sequent. The natural move would be to take the union of its sequents as [[" > A].
But even if each sequent in the branch has a counterexample in V, it does not follow in
general that their union does as well. So long as there are only finitely many sentences in
(T'UA)\ (LU—L), however, each branch will have a finite length whether open or closed.
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For —: if =¢p € T, then by the induction hypothesis v(¢) € {T,*}, and so
v(—¢) € {T,I}. The case where ¢ € A is similar. Now, if =—¢ € I', then
by construction ¢ € I'. By the induction hypothesis, v(¢) € {T,T}, and so
v(—¢) € {T,*}. The case where =—¢ € A is similar. |

This does not give us a full description of Ag(V') for V' C Uy, but it goes
a long way towards such a thing: we have a sound and complete calculus for
connective-finite arguments, and a sound calculus for arguments in general.

Unfortunately, it is not simply that the above completeness proof does
not work for other sequents: indeed the system is not complete in general. To
see this, let £ be the natural numbers N, let v, be the valuation that assigns
T to each natural number < n and L to the rest, and let V = {v, | n € N}.
Then for each n, [0,...,n>] & Ax(V), but [N>] € Ag(V). Now, consider the
argument [1 A 2,3 A 4,5 A 6,...>]. This too is in Ag(V); it has the same
counterexamples as [N>]. But there is no derivation of it in our system;
any such derivation would have to apply the AL rule infinitely many times,
which is not possible in a finite derivation. So the system as it stands is
indeed not complete.

Although we do not have completeness in general, we can use Theorems
6 and 7 to achieve a Cut-admissibility result, at least for an appropriate
form of Cut. Usual forms of Cut are out of the question, as they encode the
very kind of transitivity that the value * allows us to evade. But consider
the following form of the Cut rule:

T>A¢] [ T>A] [, > A ¢
> A

THEOREM 8. The rule Cut is admissible in the above sequent system (with
initial sequents sensitive to V).

Cut:

PROOF. Suppose there are derivations in the system of the three premise
sequents of an application of Cut. Then these premise sequents must be
connective-finite, since every sequent derivable in this system is connective-
finite; and they must be in Ag(V'), by Theorem 6. As can be checked, the
rule of Cut is sound for any such V: whenever its premise sequents are in
Ass(V), so too is its conclusion sequent. So [I' > A] € Ay (V). And since the
premise-sequents are connective-finite, so too must [I"' > A] be; thus, it has
a derivation, by Theorem 7. [

3.4. Restricted Languages

We can use this calculus to give similar results for languages that don’t
contain the full stock of connectives we’ve considered.
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Note first that while the full system lacks the subformula property, it has
a weakening of this property, which we might call the connective-occurrence
property: if a connective appears in a sequent in a derivation, then it also
appears in the endsequent of the derivation.?® This can be determined by
inspecting the rules: the conclusion-sequent of any occurrence of any rule
must contain all the connectives contained in any premise-sequents of the
rule.

This is enough to allow us to prune our proof system down to handle
languages without the full stock of connectives we have considered. For any
subset S of our full stock of connectives, let Lg be the language determined
by closing £ under the connectives in §. Say that a connective figures in a
rule iff it occurs in the conclusion-sequent of every application of the rule.??

Now, let the calculus determined by S (the S-restricted calculus) be a
restriction of the full calculus determined as follows: remove all rules in which
figure any connective not in .S, and remove any initial sequents containing
any formula not in £g.3¢

THEOREM 9. For any V C QU4 and any subset S of our full stock of connec-
tives, the S-restricted calculus is sound for Ass(V') in Ls, and complete for
connective-finite arguments in Ass(V) in L.

PROOF. For soundness: take any derivation in the restricted system. Since
the full system is sound, and the full system contains this derivation, the
derived argument is in Ags(V).

For completeness: suppose some connective-finite [I' > A] in Lg is in
Ags (V). By completeness for the full system, there is some derivation in
the full system of [I'> A]. By the connective-occurrence property, every con-
nective occurring in the derivation must be in S. But then the derivation
cannot contain any application of a rule in which figures any connective not
in S, nor can it contain any initial sequents not drawn from Lg. So the
derivation in question is in fact a derivation in the S-restricted calculus. m

28Indeed, the system has two other weakenings of the subformula property that can
prove useful in analyzing proofs, and which make clear some of the ways in which it is —
responsible for breaking the ordinary subformula property. First, any formula appearing in
a derivation of [[' > A] is either a subformula of some formula in I' U A, or the information
negation of some such subformula. Second, if = does not occur in [I' > AJ, then any formula
appearing in a derivation of [I' > A] is a subformula of some formula in T" U A.

2In this setting, this is equivalent to: it appears in the schematic conclusion-sequent
we have given. For that matter, it is also (here) equivalent to: it appears in the rule’s name.

3090 if = € S, then we have all initial sequents from the full calculus, and if - & S, we
have only those initial sequents drawn fully from L.
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As a special case, Theorem 9 gives us soundness and connective-finite
completeness for the system of Figure 2 and the language L. This system
does have the full subformula property. It really is, then, only — among the
connectives of £, causing the complications; this gives some further reason
to be suspicious of non-information-monotonic connectives. (However, with-
out — the rule Cut, in the form we’ve shown admissible, cannot be stated.)

4. Conclusion

Attending to the Galois connections between sets of arguments and sets of
valuations has proved useful in a range of applications to logics that are
reflexive, monotonic, and completely transitive, which can all be handled
through the lens of bivaluations. In this paper, we’ve shown how to extend
this toolkit to logics that might fail to be reflexive or completely transitive
or both, by adding up to two more values to the valuations. Finally, we
considered the behaviour of connectives witnessing the bilattice structure of
the resulting tetravaluations.
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