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ABSTRACT. We investigate two different broad traditions in the abstract valuational model
theory for nontransitive and nonreflexive logics. The first of these traditions makes heavy
use of the natural Galois connection between sets of (many-valued) valuations and sets
of arguments. The other, originating with work by Grzegorz Malinowski on nonreflexive
logics, and best systematized in Blasio et al. [2017], lets sets of arguments determine a
more restricted set of valuations. After giving a systematic discussion of these two different
traditions in the valuational model theory for substructural logics, we turn to looking at the
ways in which we might try to compare two sets of valuations determining the same set of
arguments.

1. INTRODUCTION

What is the space of possibilities for giving valuational model theory for substructural
logics? In previous work we’ve explored one way of generalizing a common approach to
the valuational model theory for fully structural logics, championed in [Scott, 1974; Shoe-
smith and Smiley, 1978] ([Humberstone, 2012, pp.57–59] contains a detailed introductory
presentation of this perspective), which emphasizes the role of a Galois connection between
consequence relations and sets of bivaluations. In this previous work, we’ve shown how to
extend these Galois connections to logics that need not obey reflexivity or transitivity, by
moving from two values to three and four. Call this the Galois tradition. This is not the
only systematic way of giving a valuational model theory for substructural logics, though.
There is another tradition, coming from works beginning with [Malinowski, 1990], and
drawn on in [Blasio et al., 2017; Frankowski, 2004], which has played a central role in the
development of the abstract model theory of nonreflexive and nontransitive logics. Call this
other way of associating sets of valuations with sets of arguments theMalinowski tradition.
In this paper we present a systematic and unifying treatment of this tradition, the resulting
uniform treatment being broadly similar to the valuational treatment of such logics in [Bla-
sio et al., 2017]. Our main goal here is to attempt to situate these two traditions relative
to one another. To this end we investigate a variety of different ways of comparing sets of
valuations.

The road-map for the present paper is as follows. We begin in section 2 by introducing
the common aspects of the abstract valuational approach to logical consequence against
whose background our investigation of the two traditions are defined. We then, in section
3 and section 4, introduce the two different traditions, before in section 5 looking at the
various ways in which we might compare sets of valuations. An appendix then investigates
the question of when a given set of arguments in the SET-SET framework has a least class
of valuations determining it, complementing similar results concerning arguments in the
SET-FMLA framework given in section 5.
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2 TWO TRADITIONS IN ABSTRACT VALUATIONAL MODEL THEORY

2. ABSTRACT VALUATIONAL APPROACHES TO LOGICAL CONSEQUENCE

Abstract valuational approaches to logical consequence of the kind which we will be
concerned with here involve the interplay between three components: some set V of val-
uations, some set A of arguments, and a binary counterexample relation ⨳ from V to A.
Throughout we will regardV andA as determined by some language, which we will take
to simply be a set, the members of which we refer to as formulas.1 Note in particular that
we are ignoring any structure the formulas themselves might exhibit, treating each formula
alike simply as a member of .

The way in which our language, , determines our set of arguments, A, depends on
which logical framework, or simply framework, we are working in. (We take the term
from [Humberstone, 2012, pp.103–112].) There are two frameworks which are of primary
interest in the present paper, each of which provides a different account of what an argument
is, and thus of what the set A looks like.

∙ According to the framework SET-FMLA an argument consists of a pair ⟨Γ, �⟩ of
a set of formulas and a single formula, which we will write as [Γ ⊳ �]. In the
framework SET-FMLA the set of all arguments is ASF = ℘() × .

∙ According to the framework SET-SET an argument consists of a pair ⟨Γ,Δ⟩ of sets
of formulas, which we will write as [Γ � Δ]. In the framework SET-SET the set of
all arguments is ASS = ℘() ×℘().

In the present paper we stick almost entirely to the framework SET-FMLA, but we will
have occasional reason to consider how matters fare in SET-SET as well. When we do not
explicitly remark on framework below, we are speaking in SET-FMLA. It is sometimes
useful to think of arguments as ordered by the partial order ⊑:
Definition 1. For SET-FMLA arguments, [Γ⊳�] ⊑ [Γ′ ⊳ ] iff Γ ⊆ Γ′ and � =  ; and for
SET-SET arguments, [Γ � Δ] ⊑ [Γ′ � Δ′] iff Γ ⊆ Γ′ and Δ ⊆ Δ′.

Consequence relations can be thought of as sets of arguments. Often, however, the
phrase ‘consequence relation’ is understood to impose certain conditions on such a set;
not every set is meant to count. (For example in [Humberstone, 2012, p. 55].) To avoid
even suggesting such assumptions, we frame our discussion entirely in terms of sets of
arguments, and we make any needed restrictions explicit as we go. We expect, though,
that natural applications of our results will be to sets of arguments understood as the set of
valid arguments of some logical system or other, and this connection inspires some of our
terminology.

In particular, we consider the following three conditions on sets of arguments. (Here
we state them in their SET-FMLA forms, since that is our present focus. See [French and
Ripley, 201X] for the appropriate SET-SET versions.)
Definition 2. A set A of SET-FMLA arguments is:

∙ reflexive iff for each � ∈ , [� ⊳ �] ∈ A;
∙ monotonic iff whenever a ∈ A and a ⊑ b, then b ∈ A;
∙ completely transitive iff for allΣ ⊆ , if [Γ⊳�] ∈ A for each � ∈ Σ and [Σ,Γ⊳�] ∈
A, then [Γ ⊳ �] ∈ A.

This paper focuses on connections between sets of arguments on the one hand and sets
of valuations on the other. Following [French and Ripley, 201X] (and implicitly [Hum-
berstone, 1988]), we work with tetravaluations: members of V, the set of functions from

1Throughout we will use �,  and other lowercase Greek letters as schematic letters for formulas, and Γ,Δ,Σ
and other uppercase Greek letters for sets of formulas.
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FIGURE 1. Two orders on values

the language into the set {⊤,⊥, ⊥⊤, ∗} of values. We consider {⊤,⊥, ⊥⊤, ∗} as a bilattice,
equipped with two distinct lattice orders ⊑ and ≼, as depicted in fig. 1, and lift each order
to V itself pointwise. We refer to the order ⊑ as the information order, and to the order ≼
as the truth order.

In this setting, we can present in a particularly abstract way the usual process of deter-
mining a set of arguments by specifying a set of models, a way that allows us to abstract
away from many of the details often associated with models. This usual process depends
on having some sense of what it takes for a model to be a counterexample to an argument,
and then counts an argument as valid iff it has no countermodels. Here, we define our
counterexample relation as in definition 3.

Definition 3. A valuation v is a counterexample to an argument a = [Γ ⊳ �] (in the SET-
SET framework a = [Γ �Δ])—written v⨳ a—iff v[Γ] ⊆ {⊤,⊥⊤} and v(�) ∈ {⊥,⊥⊤} (in the
SET-SET framework v[Δ] ⊆ {⊥,⊥⊤}).

In effect, our four values simply encode every possible combination of counterexampley
behaviour: ⊤ is a premise-counterexample value; ⊥ is a conclusion-counterexample value;
⊥⊤ is both of these; and ∗ is neither. With this understanding of counterexampling in mind,
any set V ⊆ V uniquely determines a set of arguments (V ) ⊆ A, namely the set of all
arguments which have no counterexamples in V .

Already, this gives us some texture to work with. (For proofs of the following claims, see
[French and Ripley, 201X].) First, (V ) is always monotonic, for any set V of valuations.
Second, (V ) is reflexive if and only if there is no v ∈ V and � ∈  with v(�) = ⊥⊤. And
third,(V ) is completely transitive if there is no v ∈ V and � ∈  with v(�) = ∗.2

3. THE GALOIS TRADITION

The connection just described between sets of valuations and monotonic sets of argu-
ments is a strong one—keeping fixed our notion of counterexample, a given set of valuations

2 Note that this third claim, unlike the second, is not a biconditional. As occasion arises we will refer to the
classes of valuations implicitly delimited here as Vr

3 (for those which never assign the value ⊥⊤), Vt
3 (for those

which never assign the value ∗). In the interests of completeness, the class of all valuations which never assign a
formula either of ∗ or ⊥⊤ will be referred to as V2.
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determines a single monotonic set of arguments. But which monotonic sets of arguments
can be determined in this way? As it happens, all of them.

To see this, it is useful to define a map going in the other direction; just as we have 
to take us from sets of valuations to sets of arguments, we want a map to take us from sets
of arguments to sets of valuations. This cannot be an inverse of, since is not injective;
indeed, every set of arguments is determined by multiple distinct sets of valuations.3 So we
are left with some choices. It is here that the two traditions we are considering differ from
each other.

In the case of the Galois tradition we associate with a given set of arguments A ⊆ A
the set of valuations (A) = {v ∈ V|∀a ∈ A,¬(v ⨳ a)}—the set of all valuations which
are not counterexamples to any argument in A. (This definition would make just as much
sense in a SET-SET framework, and indeed the Galois tradition often involves study of
both frameworks simultaneously, including the relations between them. See for example
[Shoesmith and Smiley, 1978].)

Together with the above definition of (the set of arguments consistent with a given set
of valuations) this instantiates a general and familiar structure: that of a Galois connection.
For any A ⊆ A, V ⊆ V, we have A ⊆ (V ) iff V ⊆ (A); this is what it means for ,
to form a Galois connection.

Galois connections are the simplification to the case of posets of the categorical notion
of adjunction.4 Adjunctions in general, and Galois connections in particular, crop up all
over the place in mathematics, and a great deal is known about their behaviour. One of
the key features of the Galois tradition is that it allows us to appeal directly to this body of
work.

Theorem 1 (Galois facts). For any V , V ′ ⊆ V and A,A′ ⊆ A,

(i) if V ⊆ V ′, then (V ) ⊇ (V ′),
(ii) if A ⊆ A′, then (A) ⊇ (A′),
(iii) ◦ (henceforth, ) is a closure operation on ⟨℘(V), ⊆⟩,5
(iv) ◦ (henceforth,) is a closure operation on ⟨℘(A), ⊆⟩,
(v) (A) is closed wrt ,
(vi) (V ) is closed wrt  , and
(vii)  and  form an (order-inverting) isomorphism between the closed elements of℘(V)

and the closed elements of ℘(A).

3Since the valuation v⊤ that assigns ⊤ to every formula is a counterexample to no SET-FMLA argument, it can
always be added to or removed from a set of valuations without affecting the resulting consequence relation. The
same goes for any valuation that assigns only values from {⊤, ∗}.

One particularly well-known case of this involves the SET-FMLA consequence relation of classical proposi-
tional logic. This set of arguments is determined by the usual set of all two-valued Boolean valuations (using the
value ⊤ for truth and ⊥ for falsity); but the same consequence relation is also determined by the set of valuations
that adds v⊤—which is not Boolean—to this usual set. It is cases like this which are used in [Carnap, 1943] to
motivate a shift to what is essentially the SET-SET framework. For further discussion and references on this and
related issues, see [Humberstone, 2012, p.101ff].

4Galois connections come in antitone andmonotone versions; we are here using the (original) antitone version.
These are essentially the same thing, however: a monotone Galois connection between S and T is exactly an
antitone Galois connection between S and the order-dual of T . For helpful discussion on this difference, see
[Dunn, 1991].

5A closure operation on a partially-ordered set ⟨S,≤⟩ is an operation C such that for every X, Y ∈ S: 1)
X ≤ C(X); 2) if X ≤ Y , then C(X) ≤ C(Y ); and 3) C(C(X)) ≤ C(X). (Equivalently, such that for every
X, Y ∈ S: X ≤ C(Y ) iff C(X) ≤ C(Y ).) An X ∈ S is closed wrt C iff X = C(X).
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Proof. See [Ore, 1944, p. 494–496]. Further useful discussion can be found in [Bimbó and
Dunn, 2008; Birkhoff, 1967; Davey and Priestley, 2002; Dunn, 1991; Erné et al., 1993].6

�

Another nice feature of the Galois tradition comes from its providing an abstract sound-
ness and completeness theorem for all monotonic sets of arguments (a connection empha-
sised in, for example, [Dunn and Hardegree, 2001; Hardegree, 2005]). Say that a set A
of arguments is sound for a set of valuations V iff A ⊆ (V ) (i.e. if those arguments
are among the arguments consistent with that set of valuations), and complete for it iff
(V ) ⊆ A (i.e. if the set of arguments contains all the arguments which are consistent
with that set of valuations). As should be clear, these are by no means nonstandard uses of
‘sound’ and ‘complete’, even if they are a bit more abstract than usual. So A is sound and
complete for V iff A = (V )—that is, when it is precisely the set of arguments with no
counterexamples in that set of valuations.

It is a fact for any monotonic set A that A = (A)—in the parlance of the Galois
tradition, every monotonic set of arguments A is closed. (This does not follow from ,
forming a Galois connection; all that ensures is the soundness direction. This is an addi-
tional result. For more on this result see [French and Ripley, 201X, Section 2.1].) This
is the abstract soundness and completeness theorem: it gives us a systematic way, given a
monotonic set A, of giving a set of valuations that A is both sound and complete for. The
set is (A).

Before moving to the other tradition we consider here, we pause to note that the above
presentation of the Galois tradition is a bit idiosyncratic. While the Galois tradition it-
self is widely-explored, this exploration has mainly (for example in [Dunn and Hardegree,
2001; Hardegree, 2005; Humberstone, 2012; Shoesmith and Smiley, 1978]) stuck to the
case where only the values ⊤,⊥ are used. In that setting, all of monotonicity, reflexivity,
and complete transitivity are enforced. Extending the tradition to the four-valued version
we consider here is recent, and is the topic of [French and Ripley, 201X]. (It is implicit in
[Humberstone, 1988].) This extension is also put to use in [Ripley, 2018].

4. MALINOWSKI VALUATIONS

By contrast, the other tradition we consider has beenmore flexible from the beginning. It
was developed initially in [Malinowski, 1990], to provide a valuational grip on nonreflexive
sets of arguments. It has since been taken up in [Blasio et al., 2017; Frankowski, 2004], to
work with nontransitive sets of arguments as well.

Like the Galois tradition, this other tradition, which we call the Malinowski tradition,
centres on the mapwe have already met from sets of valuations to sets of arguments, and
provides an additional map going the other way, from sets of arguments to sets of valuations.
The difference is in this additional map; the Malinowski tradition does not use  , but rather
a different map we will call . Since Galois connections are uniquely specifying, there
can be no map from sets of valuations to sets of arguments Galois-connected to  other
than  itself. Since  is distinct, it is not Galois-connected to .

To define , we begin from the notion of a Malinowski valuation.
Definition 4. Given any set A of SET-FMLA arguments and set Γ of formulas, the Mali-
nowski valuation mΓA determined by A and Γ is the valuation such that mΓA(�) =

∙ ⊤ iff � ∈ Γ and [Γ ⊳ �] ∈ A

6But note that [Davey and Priestley, 2002; Erné et al., 1993] use the monotone understanding of Galois con-
nection rather than the antitone one; recall footnote 4.
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∙ ⊥⊤ iff � ∈ Γ and [Γ ⊳ �] ∉ A
∙ ⊥ iff � ∉ Γ and [Γ ⊳ �] ∉ A
∙ ∗ iff � ∉ Γ and [Γ ⊳ �] ∈ A

This is defined as it is because of the following proposition:

Proposition 1. mΓA ⨳ [Σ ⊳ �] iff: Σ ⊆ Γ and [Γ ⊳ �] ∉ A.

Proof. LTR: Suppose that mΓA ⨳ [Σ⊳�]. This is the case iff mΓA[Σ] ⊆ {⊤,⊥⊤} and m
Γ
A(�) ∈

{⊥⊤,⊥}. From definition 4 we can see that mΓA( ) ∈ {⊤,⊥⊤} iff  ∈ Γ, and so Σ ⊆ Γ.
Similarly, as mΓA(�) ∈ {⊥⊤,⊥}, it follows that [Γ ⊳ �] ∉ A.

RTL: Suppose that Σ ⊆ Γ and [Γ ⊳ �] ∉ A. It follows from definition 4 that, as Σ ⊆ Γ
that mΓA(Σ) ⊆ {⊤,⊥⊤}, and as [Γ ⊳ �] ∉ A that mΓA(�) ∈ {⊥⊤,⊥}, from which it follows that
mΓA ⨳ [Σ ⊳ �], as desired. �

The next proposition illustrates a connection between Malinowski valuations and the
information ordering ⊑ on valuations from fig. 1 (which, as mentioned above, is lifted to
an ordering on V pointwise).

Proposition 2. Fix some Γ ⊆  andA ⊆ A such that for some � ∈  we have [Γ⊳�] ∉ A.
Then, for any valuation v such that for all �, if [Γ ⊳ �] ∉ A then v ⨳ [Γ ⊳ �], we have
mΓA ⊑ v.

Proof. Suppose that for all �, if [Γ⊳�] ∉ A then it holds that v⨳ [Γ⊳�]. Take an arbitrary
formula  , to show that mΓA( ) ⊑ v( ). We proceed by cases:

∙ If  ∈ Γ: By the fact that [Γ ⊳ �] ∉ A we must have v[Γ] ⊆ {⊤,⊥⊤}. So the only
way mΓA( ) ⋢ v( ) is if mΓA( ) = ⊥⊤ and v( ) = ⊤. But if mΓA( ) = ⊥⊤, then it
must be that [Γ ⊳  ] ∉ A; and if v( ) = ⊤, then v is not a counterexample to
[Γ ⊳  ], contradicting our initial supposition about v.

∙ If  ∉ Γ: Then we know that mΓA( ) ∈ {⊥, ∗}, so the only way mΓA( ) ̸⊑ v( ) is
if mΓA( ) = ⊥ and v( ) ∈ {⊤, ∗}. Since mΓA( ) = ⊥, we know that [Γ ⊳  ] ∉ A.
But if v( ) ∈ {⊤, ∗} then it is not a counterexample to [Γ ⊳  ], contradicting our
initial supposition about v.

So it follows that, for every formula  , we have mΓA( ) ⊑ v( ), and thus that mΓA ⊑ v as
desired. �

Propositions 1 and 2 tell us that mΓA is a universal counterexample to every A-invalid
argument with premises Γ, and in addition that if there is any A-invalid argument with
those premises, then mΓA is the information-least among all such universal counterexam-
ples.7 Since each Malinowski valuation counterexamples all A-invalid arguments with a
particular set of premises, we can be sure to have enough counterexamples by considering
each set of premises in turn and collecting up all their Malinowski valuations. This is just
what the map  does:

Definition 5. For any set A of arguments, A = {mΓA | Γ ⊆ }.

7Note that proposition 2 does not hold in cases where Γ is nonempty and explosive according toA in the sense
that for all �we have [Γ⊳�] ∈ A. In this casemΓA is just a characteristic function for Γ, assigning⊤ to all formulas
in Γ and ∗ to everything else. But in this case every valuation counterexamples every A-invalid argument whose
premises are Γ (there are none!), so in particular the ⊑-least valuation v∗ which assigns ∗ to every formula does
so. But as in this case (since Γ is nonempty) mΓA is not v∗ it is also not ⊑-below it.
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The core of this idea is contained in the second claim of [Malinowski, 1990, Lemma 3.1];
a similar notion is defined in [Frankowski, 2008, Thm. 5]. (Neither source considers the full
four-valued setup we use here; each uses a different set of three of the values.) [Blasio et al.,
2017] arrives at this exact approach.8 Note that, in contrast to the Galois tradition, there
is no obvious way to extend this idea to the SET-SET framework. (Indeed, when [Blasio
et al., 2017] moves from SET-FMLA to SET-SET, it also moves from the Malinowski to the
Galois tradition, without commenting on the change.)

One useful result in working with Malinowski valuations is the following, which allows
us to import results from the Galois tradition in reasoning about Malinowski valuations.

Proposition 3. A is monotonic iff A ⊆ A.

Proof. LTR: We prove the contrapositive. So take any A, and suppose there is some mΓA ∉
A; then there is some [Σ ⊳ �] ∈ A with mΓA ⨳ [Σ ⊳ �]. We must have mΓA(�) ∈ {⊥⊤,⊥},
and so [Γ ⊳ �] ∉ A. But by proposition 1, Σ ⊆ Γ, and so A must not be monotonic.

RTL: Again, we show the contrapositive. Suppose A is not monotonic; then there are
[Γ ⊳ �] ∈ A and [Γ′ ⊳ �] ∉ A with Γ ⊆ Γ′. Since [Γ′ ⊳ �] ∉ A, we have mΓ′A ⨳ [Γ′ ⊳ �].
But then by proposition 1, mΓ′A ⨳ [Γ⊳�], and since [Γ⊳�] ∈ A, this means mΓ′A ∉ A. �

One immediate similarity to the Galois tradition is in abstract soundness and complete-
ness. For any monotonic A, we have A = (A), just as we had A = (A). So,
just as the Galois tradition does, the Malinowski tradition allows us to give a valuational
presentation of any monotonic set of arguments.

Theorem 2. If A is monotonic, then (A) = A. (See [Malinowski, 1990, Thm. 3.2(i)],
[Frankowski, 2008, Thm. 5], [Blasio et al., 2017, Thm. 1].)

Proof. Suppose A is monotonic. Then by proposition 3, (A) ⊆ (A), so ((A)) ⊆
((A)), and thus A ⊆ ((A)). Conversely, if [Γ ⊳ �] ∉ A, then mΓA ⨳ [Γ ⊳ �] by
proposition 1, and mΓA ∈(A). So((A)) ⊆ A. �

So, much like the Galois tradition, the Malinowski tradition gives us a systematic way,
given a monotonic set of arguments A, of providing a set of valuations that A is both sound
and complete for—in this case, the set being (A).

5. COMPARING SETS OF VALUATIONS

As we’ve seen in the previous two sections, the Galois and Malinowski traditions both
provide us with a method for systematically associating a given monotonic set of arguments
with a set of valuations in such a way that we can prove an abstract soundness and com-
pleteness result. What can we say about the relationships which hold between these two
different classes of valuations? What we will do here is to compare these two different sets
of valuations by comparing them along the following, relatively natural, dimensions.

∙ Inclusion. What relationships do the two sets of valuations stand in considered as
sets?

∙ Frameworks. Given that the SET-SET-framework ismore expressive than the SET-
FMLA-framework, how do the sets of SET-SET arguments which the two sets of
valuations determine compare?

8What we write as mΓA, [Blasio et al., 2017] writes as
q
Γ, leaving A implicit; and what we write asA they

write as qA. See [Blasio et al., 2017, p. 239].
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∙ Order Relations. How are the two sets of valuations related by our two ordering
relations on valuations: the information order ⊑, and the truth order ≼?

∙ Position in the Lattice of Classes of Valuations Determining A. Do these
two sets of valuations have interesting properties when considered as members
ofMod(A)—the collection of all sets of valuations determining A?

This is, of course, not an exhaustive list of the different respects in which we could compare
sets of valuations, but it will be enough for us to at least be able to glimpse the fine texture
of how the two traditions are related.

5.1. Inclusion. We will begin with the most natural way of comparing these two different
classes of valuations, namely as sets. Here we have already seen in proposition 3 that
A ⊆ A iff A is monotonic. The reason for this link to monotonicity is interesting,
and allows us to highlight an relationship between the Galois and Malinowski traditions.
For any set A of arguments, we have (A) ⊆ A ⊆ (A); and since  can only ever
deliver monotonic sets of arguments, when A itself is not monotonic these subset relations
are proper. Indeed, just as (A) is A’s monotonic closure, (A) is its monotonic
interior. (See theorem 3.) This is a less familiar notion than monotonic closure, but just as
well-defined: the monotonic interior of A is the monotonic B ⊆ A such that all monotonic
C ⊆ A are subsets of B; just as the monotonic closure of A is the monotonic B ⊇ A such
that all monotonic C ⊇ A are supersets of B.

Theorem 3. (A) = {[Σ ⊳ �] | [Γ ⊳ �] ∈ A, for every Γ ⊇ Σ}

Proof. [Σ⊳ ] ∈ (A) iff there is no Γ ⊆  with mΓA ⨳ [Σ⊳ ]. By proposition 1, this
holds iff there is no Γ ⊇ Σ with mΓA ⨳ [Σ ⊳  ]. Since each such mΓA[Σ] ⊆ {⊤,⊥⊤}, this in
turn holds iff there is no Γ ⊇ Σ with mΓA( ) ∈ {⊥,⊥⊤}. And this holds iff for every Γ ⊇ Σ,
[Γ ⊳  ] ∈ A, which is what we need. �

5.2. Looking to SET-SET Counterparts. We take the idea of counterparts from [Shoe-
smith and Smiley, 1978, p. 72]:9

Definition 6. A set A of SET-FMLA arguments and a set B of SET-SET arguments are
counterparts iff for every Γ, � we have [Γ ⊳ �] ∈ A iff [Γ � �] ∈ B.

Given a set V of valuations, letSS(V ) be the set of SET-SET arguments with no coun-
terexample in V . Then it is quick to see that(V ) andSS(V ) are always counterparts. To
explore sets of valuations, SS is more discerning than : there are sets V , V ′ such that
(V ) = (V ′) but SS(V ) ≠ SS(V ′). The reverse is never the case.

Every monotonic A has at least one monotonic SET-SET counterpart: recall that any
such A is (A), and consider SS(A). But some have only one, and some have more.
As it turns out we can precisely isolate the conditions under which a set of monotonic SET-
FMLA arguments has a unique SET-SET counterpart, and thus the conditions under which
a set of arguments is compatible with a range of SET-SET counterparts. Say that a set Γ of
formulas is A-explosive iff we have [Γ ⊳ �] ∈ A for every formula �. Then we have the
following result:

Proposition 4. Suppose that a set A of monotonic SET-FMLA arguments is such that
∙ no set of formulas is A-explosive, and
∙ there is at most one formula � with [⊳�] ∉ A

Then A has at most one monotonic SET-SET counterpart.
9This is not the definition given there, but amounts to the same and is more convenient for our purposes here.
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Proof. To establish that anAmeeting our conditions has at most one such counterpart, note
first that the ‘at most’ in the second condition can, in light of the first condition, be treated
as an ‘exactly’. (If there were no such �, every set Γ would be A-explosive.) Consider any
monotonic SET-SET counterparts B and C of A.

∙ Neither B nor C can include any empty conclusion arguments. Suppose one did;
say [Γ�] ∈ B. Then sinceB is monotonic, [Γ��] ∈ B; and sinceB is a counterpart
of A, that would mean [Γ ⊳ �] ∈ A. But every  ≠ � already has [⊳ ] ∈ A,
and since A is monotonic, that means [Γ ⊳  ] ∈ A for each of these. So Γ is
A-explosive, and we have a contradiction. So B and C agree on empty conclusion
arguments, by excluding them all.

∙ B and C must agree with A, and hence with each other, on single conclusion argu-
ments.

∙ B and C must include all arguments [Γ � Δ] with |Δ| ≥ 2. Each such argument
contains some conclusion  ≠ �, and as we have [⊳ ] for all such formulas B
and C must both, as counterparts of A, contain the argument [� ] and thus by
monotonicity [Γ � Δ].

So B and C must agree everywhere, and so are identical. �

Sets of arguments which meet this condition are, admittedly, rather strange—they con-
tain a single formula � such that an argument is in that set just in case its conclusion isn’t
�. It turns out that these strange cases are the only sets of arguments which have a unique
monotonic SET-SET counterpart; in every other case, the SET-SET framework gives us a
properly finer grip on our sets of valuations.

To see this, we need the notion of an exact counterexample:

Definition 7. Given a SET-FMLA argument a = [Γ⊳ ], its exact counterexample va is the
valuation such that va( ) = ⊥ iff  ∉ Γ and ⊥⊤ iff  ∈ Γ, and for all formulas � other than
 , va(�) = ⊤ iff � ∈ Γ and ∗ iff � ∉ Γ.

Proposition 5. Suppose that a setA of monotonic SET-FMLA arguments is such that either:
∙ there is some A-explosive set of formulas Γ, or
∙ there are distinct formulas � and  with [⊳�], [⊳ ] ∉ A.

Then there are sets V1, V2 of valuations with(V1) = (V2) = A but SS(V1) ≠ SS(V2).

Proof. Let V1 = {va|a ∉ A}. First, we verify that(V1) = A. To see that(V1) ⊆ A, take
any argument a ∉ A, and note that va is a counterexample to a. To see that A ⊆ (V1),
take any argument [Γ⊳�] ∉ (V1). There must be some argument b ∉ Awith va⨳[Γ⊳�].
That is, va must assign everything in Γ some value from {⊤,⊥⊤} and � either ⊥ or ⊥⊤. But
by definition 7, this can only happen when [Γ ⊳ �] ⊑ a. Since A is monotonic and a ∉ A,
it must be that [Γ ⊳ �] ∉ A.

So much for V1. To find V2:
∙ If there is anA-explosive setΓ, then let vΓ be the valuationwhich assigns⊤ to every

 ∈ Γ, and ∗ to all other formulas, and let V2 = V1 ∪ {vΓ}. Clearly vΓ ⨳ [Γ�]. It
remains to be shown that (i) [Γ�] ∈ SS(V1) and (ii) (V2) = A. For (i) note that
the exact counterxample to an argument [Σ ⊳ �] is a counterexample to [Γ�] iff
Γ ⊆ Σ. Since Γ is A-explosive (and A is monotonic), every superset of Γ is also A-
explosive, sowe cannot haveΓ ⊆ Σ if [Σ⊳�] ∉ A. Thus there is no counterexample
to [Γ�] in V1. For (ii) to fail, there would need to be some [Σ ⊳ �] ∈ A where
vΓ ⨳ [Σ ⊳ �]. But vΓ is not a counterexample to any SET-FMLA argument since it
assigns no formulas ⊥ or ⊥⊤.
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∙ If there are distinct � and  with [⊳�], [⊳ ] ∉ A, let v�, be the valuation which
assigns ⊥ to � and  , and ∗ to all other formulas, and let V2 = V1 ∪ {v�, }.
Clearly, v�, ⨳ [��,  ]. It remains to be shown that (i) [��,  ] ∈ SS(V1), and (ii)
(V2) = A. For (i) note that exact counterexamples to SET-FMLA arguments never
assign values from {⊥,⊥⊤} to more than one formula, so no exact counterexample
to a SET-FMLA argument is a counterexample to this argument. For (ii) to fail,
there would need to be some [Γ⊳ �] ∈ A where v�, ⨳ [Γ⊳ �]. But the only SET-
FMLA arguments which v�, counterexamples are [⊳�] and [⊳ ], and we know
that neither of those arguments are in A.

�

It is instructive to very briefly compare what we have shown here with what is known
about the case of sets of monotonic, reflexive and completely transitive sets of arguments.
In [Shoesmith and Smiley, 1978, p.73] it is shown that every monotonic, reflexive and
completely transitive set of SET-FMLA arguments has at least two SET-SET counterparts,
while the above results show that this does not fully generalise to all monotonic sets of SET-
FMLA arguments. As it turns out, however, reflexivity is enough to guarantee the condition
of proposition 5; transitivity doesn’t seem to be involved here.

Corollary 1. Suppose that A is a monotonic and reflexive set of arguments. Then there are
sets V1, V2 of valuations with(V1) = (V2) = A but SS(V1) ≠ SS(V2).

Proof. Every set A of monotonic and reflexive arguments must meet one of the two condi-
tions on proposition 5.

To see this, suppose that there is at most one formula � for which [⊳�] ∉ A. If there
isn’t any such �, then the empty set is A-explosive and we’re done. If there is such a �, by
monotonicity and the fact that [⊳ ] ∈ A for every  ≠ �, it follows that [� ⊳  ] ∈ A for
all  ≠ �, and by reflexivity [� ⊳ �] ∈ A. So it follows that {�} is A-explosive.

�

What the above results tell us is that looking to the connections between sets of valuations
and the SET-SET arguments brings into view differences which we cannot register by just
looking at SET-FMLA arguments, for almost any A we might care about. As it turns out,
considering the SET-SET framework helps us to see stronger connections between  and
. Not only do they both give us a way to get a valuational grip on any monotonic SET-
FMLA set of arguments, they do so in a way that matches perfectly even when extended to
the more discriminating SET-SET framework:

Theorem 4. For any set A of arguments SS(A) ⊆ SS(A). If A is monotonic, then
SS(A) = SS(A).

Proof. First claim: Suppose [Γ � Δ] ∉ SS(A). Then there is some valuation v ∈ A
with v ⨳ [Γ � Δ]. For every � ∈ Δ, this gives v ⨳ [Γ ⊳ �], so [Γ ⊳ �] ∉ A. This in turn
means that for every � ∈ Δ, mΓA(�) ∈ {⊥⊤,⊥}. And we know that mΓA[Γ] ⊆ {⊤,⊥⊤}; so
mΓA ⨳ [Γ � Δ]. Thus, [Γ � Δ] ∉ SS(A).

Second claim: Assume A is monotonic. Then by proposition 3, A ⊆ A, and so by
(the SET-SET-analogue of) theorem 1(ii) it follows that SS(A) ⊆ SS(A). �

So  and  are not just any ways to get at a set of SET-FMLA arguments; the different
sets of valuations they deliver always select the same SET-SET counterpart to the original
SET-FMLA set.
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5.3. Orderings on Valuations. Another way of comparing Galois and Malinowski val-
uations is by looking at how they interact with the information and truth orderings, both
individually and collectively. We begin by looking at how Malinowski valuations interact
with the information ordering, before going on to see how sets of Malinowski and Galois
valuations are related by (the appropriate lifting of) the information and truth orderings.

Firstly, note that moving to stronger collections of arguments moves each Malinowski
valuation down in the information order.
Lemma 2. A ⊆ A′ iff for every Γ ⊆ , mΓA′ ⊑ m

Γ
A

Proof. LTR: By noting that ⊤ ⊑ ⊥⊤ and ∗ ⊑ ⊥.
RTL: Suppose that the right hand side holds, and that [Σ ⊳ �] ∉ A′ for some Σ, �.

Then mΣA′ ⨳ [Σ ⊳ �], so since mΣA′ ⊑ mΣA, we have mΣA ⨳ [Σ ⊳ �]. But this must mean
mΣA(�) ∈ {⊥⊤,⊥}, which holds only when [Σ ⊳ �] ∉ A. �

This result gives us the necessary tools to prove an analogue of theorem 1(ii), in this case
in terms of the information order, rather than subset ordering on valuations. To state this
we will first need to lift the ⊑ so that it relates, not just pairs of individual valuations, but
pairs of sets of valuations. To do this, we use what in [Brink, 1993, p.184] is called ⊑+—
the power relational analogue of ⊑. More generally, given a relation R between valuations,
and sets of valuations V and V ′ let us say that V R+ V ′ iff (i) for every v ∈ V there is a
v′ ∈ V ′ such that v R v′, and (ii) for every v′ ∈ V there is a v ∈ V such that v R v′. Then
the analogue we have of theorem 1(ii) is the following.
Theorem 5. If A is monotonic, then A ⊆ A′ iff A′ ⊑+ A.
Proof. LTR: Suppose that A ⊆ A′. Suppose that v′ ∈ A′. Such a v′ = mΓA′ for some
Γ, and by lemma 2 it follows that v′ ⊑ mΓA which (by definition) is in A. Suppose then
that v ∈ A. Then v = mΓA for some Γ, and by lemma 2 it follows that mΓA′ ⊑ v and
mΓA′ ∈A′ by definition. So A′ ⊑+ A, as desired.

RTL: Suppose that A′ ⊑+ A, and consider any argument [Γ ⊳ �] ∉ A′. (If there
is no such argument, we’re done.) Then mΓA′ ⨳ [Γ ⊳ �]. By our supposition, then, there is
some mΣA ∈A s.t. mΓA′ ⊑ m

Σ
A. It follows that m

Σ
A⨳ [Γ⊳�] and so by proposition 1 Γ ⊆ Σ

and [Σ⊳�] ∉ A. Since A is monotonic—this is the only place in the proof this assumption
is used—[Γ ⊳ �] ∉ A, as desired. So A ⊆ A′. �

Let us turn now to looking at how the information order relates Galois valuations and
Malinowski valuations.
Definition 8. Given a valuation v, itsMalinowski premise setMv is {� | v(�) ∈ {⊤,⊥⊤}}.

Lemma 3. Given a monotonic set A of arguments and a v ∈ A, we have v ⊑ mMv
A .

Proof. Suppose v ̸⊑ mMv
A . Then there is some � with v(�) ⋢ mMv

A (�). Either � ∈ Mv or
not. If it is, then v(�) ∈ {⊤,⊥⊤}, and mMv

A (�) ∈ {⊤,⊥⊤}. So v(�) = ⊥⊤ and mMv
A (�) = ⊤.

By this last, [Mv ⊳ �] ∈ A; and so v ∉ A. If � ∉ Mv, then v(�) ∈ {⊥, ∗}, and
mMv
A (�) ∈ {⊥, ∗}. So v(�) = ⊥ and mMv

A (�) = ∗. By this last, [Mv ⊳ �] ∈ A; and so
v ∉ A. �

So every valuation consistent with a given set of arguments is information-below some
Malinowksi valuation for that set of arguments, namely the Malinowski valuation deter-
mined by that valuation’s premise set. This gives us all the ingredients we need for the
following result.
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Theorem 6. If A is monotonic, then A ⊑+ A.

Proof. Suppose that v ∈ A. By lemma 3 it follows that v ⊑ mMv
A , and mMv

A ∈ A.
Suppose, then, that v′ ∈A. As A is monotonic by proposition 3 it follows that v′ ∈ A
and v′ ⊑ v′. �

Interestingly lemma 3 also provides us with enough information to see how A andA
are related by the truth ordering.

Theorem 7. If A is monotonic, then A ≼+ A.

Proof. Take any mΓA ∈A. Since A is monotonic, we haveA ⊆ A by proposition 3.
So mΓA ∈ A, and as mΓA ≼ m

Γ
A, we’re halfway there.

For the other half, take any v ∈ A, and consider mMv
A . The two valuations assign a

value in {⊤,⊥⊤} to exactly the same formulas, and by lemma 3, v ⊑ mMv
A . So for any formula

�, there are three possibilities: either v(�) = mMv
A (�), or v(�) = ∗ and mMv

A (�) = ⊥, or
v(�) = ⊤ and mMv

A (�) = ⊥⊤. In any of these three cases, though, mMv
A (�) ≼ v(�). So

mMv
A ≼ v, and thus there is a valuation m in A with m ≼ v. �

The previous two theorems paint an interesting picture of how the two traditions of val-
uations are related. For monotonic sets of arguments, the Malinowski approach produces
sets of valuations higher in the (power relation of the) information order, while the Galois
approach produces sets of valuations higher in the (power relation of the) truth order.

5.4. Position in the Lattice of Classes of Valuations Determining A. Multiple different
classes of valuations can determine the same set of arguments—the Galois and Malinowski
valuations being just two examples. One way of thinking about how these two classes of
valuations are related is to consider how they sit amongst the collectionMod(A) of all A-
determining classes of valuations.10 One obvious reason for wondering about any potential
connection here is the fact that the Galois valuations fill a natural place in this collection.

Proposition 6. A is the ⊆-maximum element ofMod(A).

For monotonic A, we know from proposition 3 thatA is a member ofMod(A). One
natural question is whether it might be in some sense minimal in Mod(A). As it turns
out, in the SET-FMLA-framework at least, we are essentially never guaranteed to be able
to find least sets of valuations consistent with a given set of arguments. In the remainder
of this section we demonstrate that this is the case, leaving the discussion of the SET-SET
cases, where least sets of valuations are much easier to come by, to the appendix. We begin
by looking at what happens when we are considering bivaluations. Second, we turn to
the general situation involving tetravaluations. We follow up by considering in turn both
reflexive, as well as transitive trivaluations.

5.4.1. Bivaluations. We can use [Shoesmith and Smiley, 1978]’s work to help with the
situation for least sets of bivaluations in the SET-FMLA framework. In this section, we talk
of Reflexive, Monotonic, and completely Transitive sets of arguments as ‘RMT’ sets, to
avoid taking up too much space.

Proposition 7. If A is a SET-FMLA set of arguments and B is an RMT SET-SET set of
arguments, then A and B are counterparts iff A = SF2B.

10That is to sayMod(A) = {V |A = (V )}.
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Proof. LTR: suppose A ≠ SF2B, to show that A and B are not counterparts. Then there
must be either some [Γ ⊳ �] ∈ A but not inSF2B, or else some [Σ ⊳  ] ∈ SF2B but
not in A. In the first case, since [Γ ⊳ �] ∉ SF2B, there must be some v ∈ 2B with
v ⨳ [Γ ⊳ �]. By the definition of ⨳, though, we have v ⨳ [Γ � �], and so [Γ � �] ∉ B.
Thus, A and B are not counterparts. In the second case, since [Σ ⊳  ] ∈ SF2B, there
must be no v ∈ 2B with v⨳ [Σ⊳ ]. So, by the definition of ⨳, there is no v ∈ 2B with
v⨳ [Σ� ]. Thus, [Σ� ] ∈ SS2B. But sinceB is RMT,B = SS2B. So [Σ� ] ∈ B,
and so A and B are not counterparts.

RTL: Suppose A = SF2B. Now consider any [Γ ⊳ �]. This is in A iff it has no
counterexample in 2B, by our supposition. This is true iff [Γ ��] has no counterexample
in 2B. And this, in turn, is true iff [Γ � �] ∈ SS2B. And (since B is RMT, we know
B = SS2B, and so) this holds iff [Γ � �] ∈ B. Thus, A and B are counterparts. �

Corollary 4. If there is a set V of bivaluations with A = SFV and B = SSV , then A
and B are counterparts.

Proof. V = 2SSV , so A = SF2SSV . Since B = SSV , this gives A = SF2B.
From here, proposition 7 finishes the job. �

Theorem 8. If A is an RMT set of SET-FMLA arguments, then there is a least V such that
A = SFV iff there is a greatest set of arguments among the RMT SET-SET counterparts
to A.

Proof. LTR: Suppose there is a least such V ; we claimSSV is greatest among RMT coun-
terparts. It is quick to see thatSSV is indeed an RMT counterpart: since it is determined by
a set of bivaluations, it must be RMT, and since V = 2SSV , we have A = SF2SSV ,
so by proposition 7 it is a counterpart of A.

It remains to show only that for any RMT counterpart B to A we have B ⊆ SSV .
So consider any such RMT counterpart B. Since it is a counterpart, by proposition 7,
A = SF2B. And since V is least among setsU of valuations withSFU = A, this means
V ⊆ 2B, and so (by antitonicity) SS2B ⊆ SSV . But since B is RMT, B = SS2B,
so B ⊆ SSB.

RTL: Suppose there is a greatest RMT counterpart B toA; we claim 2B is least among
setsU of valuations withSFU = A. SinceB is an RMT counterpart toA, by proposition 7
SF2B = A.

It remains only to show that for any set U of bivaluations with SFU = A we have
2B ⊆ U . So consider anyU withSFU = A. By corollary 4SSU must be a counterpart
to A, and since U contains only bivaluations SSU is RMT. Since B is greatest among
RMT counterparts to A, we haveSSU ⊆ B, and so (by antitonicity) 2B ⊆ 2SSU . But
since U is a set of bivaluations, U = 2SSU , and so 2B ⊆ U . �

Theorem 9. If A is a compact RMT set of SET-FMLA arguments, then there is a least set
V with A = SFV .

Proof. [Shoesmith and Smiley, 1978, Thm 5.11] shows that a compact RMT SET-FMLA A
has a greatest RMT SET-SET counterpart. From there, apply theorem 8. �

5.4.2. Tetravaluations. Unlike the bivaluational case, when it comes to tetravaluations
there is in general no guarantee that there will be a least set of valuations determining a
given SET-FMLA set of arguments, even if the set of arguments obeys quite restrictive con-
ditions. Indeed, as we will see, it is not even enough to consider sets of arguments that are
both RMT and compact.
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Here is an example: consider a small language  = {p, q, r}, and the set of arguments
A, where A is the reflexive and monotonic closure of {[p, q ⊳ r]}, which is to say A =
SFr3{[p, q ⊳ r]}.

11

Theorem 10. For this A, there is no least set V of tetravaluations such that SFV = A.

Proof. Let vx;y;z be the valuation assigning the value x to p, the value y to q, and the value
z to r, and consider the following two sets. The first, V1, is {v⊤;∗;⊥, v∗;⊤;⊥, v⊤;⊥;⊤, v⊥;⊤;⊤}.
The second, V2, is {v⊤;⊥;⊥, v⊥;⊤;⊥, v⊤;⊥;⊤, v⊥;⊤;⊤}. (They differ in their first two members.)

Neither contains a counterexample to [p, q ⊳ r], since only v⊤;⊤;⊥ is such a counterex-
ample. SoVi ⊆ A, for i = 1, 2.

To make sure each set contains enough counterexamples, it suffices to check four argu-
ments: [p ⊳ r], [q ⊳ r], [p, r ⊳ q], and [q, r ⊳ p]; every argument not in A is a subargument
of one of these four. Both v⊤;∗;⊥ and v⊤;⊥;⊥ are counterexamples to the first of these; both
v∗;⊤;⊥ and v⊥;⊤;⊥ to the second; v⊤;⊥;⊤ to the third, and v⊥;⊤;⊤ to the fourth. So each of V1
and V2 contains counterexamples to every argument not in A; that is, A ⊆ Vi for i = 1, 2.

Thus, V1 = V2 = A. As neither V1 nor V2 is contained in the other, the only way
for there to be a least V with V = A would be for there to be some V ⊆ V1 ∩ V2 with
V = A. But V1 ∩ V2 = {v⊤;⊥;⊤, v⊥;⊤;⊤}; this set contains no counterexample to either
[p ⊳ r] or [q ⊳ r]. So any V ⊆ V1 ∩ V2 must be such that {[p ⊳ r], [q ⊳ r]} ⊆ (V ), and so
V ≠ A.

�

5.4.3. Reflexive trivaluations. The same example as above suffices to settle the case for
reflexive trivaluations via the following Lemma.

Lemma 5. If A is a reflexive set of arguments and V = A, then V ⊆ Vr
3.

Proof. If V ⊈ Vr
3, then there is some v ∈ V and � ∈  with v(�) = ⊥⊤, and so V is not

reflexive. �

That is, all the tetravaluations we need to consider for any reflexive set of arguments
are reflexive trivaluations; the remaining tetravaluations don’t get involved. So the above
example already gives us a compact reflexive and monotonic set of arguments with no least
set of reflexive trivaluations determining it.

5.4.4. Transitive trivaluations. For transitive trivaluations, however, we need a different
example. This is because, even when a set A of arguments is completely transitive, we
can still have A = V even if V ⊈ Vt

3. So finding a completely transitive set with no
least set of tetravaluations determining it is not enough; there might yet be a least set of
transitive trivaluations. Moreover, we already know that if we have a set of arguments that
is RMT and compact, there will be a least set of transitive trivaluations determining it:
since the set is reflexive, it can only be determined by sets of reflexive trivaluations, and
the only valuations that are both reflexive trivaluations and transitive trivaluations are the
bivaluations, so this case reduces to the bivaluational case, in which we know compactness
suffices for a least such set.

What about nonreflexive sets, though? Here, an even simpler example than the last one
suffices to show that there are monotonic completely transitive compact sets of SET-FMLA
arguments with no least set of valuations determining them. Consider a small language

11For reference, this means that A is the following set of arguments {[p ⊳ p], [q ⊳ q], [r ⊳ r], [p, q ⊳ p], [p, q ⊳
q], [p, r ⊳ p], [p, r ⊳ r], [q, r ⊳ q], [q, r ⊳ r], [p, q, r ⊳ p], [p, q, r ⊳ q], [p, q, r ⊳ r], [p, q ⊳ r]}.
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 = {p, q}, and the set of arguments A = {[p, q ⊳ q]}. This set is monotonic, completely
transitive, and compact.

Theorem 11. For thisA, there is no least set V of transitive trivaluations such thatSFV =
A.

Proof. Let vxy be the valuation assigning the value x to p and the value y to q, and consider
the following two sets. The first, V3, is {v⊥⊤⊥, v

⊥
⊥⊤, v

⊥⊤
⊤}. The second, V4, is {v

⊤
⊥, v

⊥
⊥⊤, v

⊥⊤
⊤}. (They

differ only in their first member.)12
Neither contains a counterexample to [p, q ⊳ q], since only v⊤⊥⊤ and v⊥⊤⊥⊤ are such coun-

terexamples. SoVi ⊆ A for i = 3, 4.
There are seven remaining SET-FMLA arguments in this language, but only three need to

be checked (since the other four are subarguments of these): [p⊳ q], [q ⊳ q], and [p, q ⊳ p].
v⊥⊤⊥ and v⊤⊥ are both counterexamples to the first; v⊥⊥⊤ is a counterexample to the second; and
v⊥⊤⊤ is a counterexample to the third. So each of V1 and V2 contains counterexamples to
every argument not in A; that is, A ⊆ (Vi) for i = 3, 4.

Thus, V3 = V4 = A. As neither V3 nor V4 is contained in the other, the only way
for there to be a least V with V = A would be for there to be some V ⊆ V3 ∩ V4 with
V = A. But V3 ∩ V4 = {v⊥⊥⊤, v

⊥⊤
⊤}; this set contains no counterexample to [p ⊳ q]. So any

V ⊆ V3 ∩ V4 must be such that [p ⊳ q] ∈ V , and soV ≠ A. �

Given the above results, then, it is clear that Malinowski valuations cannot be the least
set of valuations consistent with a given set of arguments, as there may not be any least
set of valuations. The next natural thing to wonder, then, is whether the set Malinowksi
valuations are the least set of valuations when such a set exists. As it happens, though, not
even this is the case. To see this consider the language  = {p, q} again, and new set of
arguments A′, where A′ is the monotonic closure of the set {[⊳p]} (i.e. A′ = {[⊳p], [p ⊳
p], [q⊳p], [p, q⊳p]}). The set of Malinowski valuations for this set of arguments are, letting
vxy be the valuation assigning x to p and y to q, the following:

m∅A′ = v∗⊥

m{p}A′ = v⊤⊥

m{q}A′ = v∗⊥⊤

m{p,q}A′ = v⊤⊥⊤
Now by theorem 2 this set of valuations determines A′. As it happens, though, this is not
the minimal set of valuations which determinesA′. To show this it will be helpful to prove a
general result which shows why the Malinowski valuations for a set of arguments are rarely
guaranteed to be the minimal set of valuations determining that set of arguments.

Theorem 12. Suppose that S ⊆A is a set of valuations such that for all m ∈A there
is a v ∈ S such that m ⊑ v. Then S ∈Mod(A).

Proof. First we show that (S) ⊆ A. Suppose that there is an a ∉ A. Then by theorem 2
there is an m ∈ A such that m ⨳ a. By the construction of S, though, there is a v ∈ S
such that m ⊑ v, so by fact 1 of French and Ripley [201X] it follows that v ⨳ a, as desired.

12It’s perhaps worth noting that V3 consists only of Malinowski valuations for A: it is {m{p}A , m{q}A , m{p,q}A }.
(This is how this example was found.) However, it is not A, since it omits m∅A = v

⊥
⊥.



16 TWO TRADITIONS IN ABSTRACT VALUATIONAL MODEL THEORY

Second we show that A ⊆ (S). If there is a v ∈ S such that v ⨳ a for some argument
a, then from the fact that S ⊆ A it follows that there is an m ∈ A (i.e. v) such that
m ⨳ a, and so by theorem 2 it follows that a ∉ A.

�

To see how this applies in the above case note that m{p,q}A′ (alias v⊤⊥⊤) is higher in the
information ordering than all the other members of A′, and in this case (being a single
valuation) constitutes a minimal set of valuations determining A′. So even in cases where
minimal sets of valuations exist, they are likely to not be the Malinowski valuations, as the
full set of Malinowski valuations will often carry too much redundant information.

6. CONCLUSION

The Galois tradition and theMalinowski tradition are related in a number of subtle ways.
Each gives a method of determining a set of valuations from a set of arguments, in a way
that suffices for an abstract soundness and completeness theorem. TheMalinowski tradition
in particular has quite a lot of internal texture. What the above results seem to suggest is
that in order to get a better grip on the Malinowski valuations the place to look is at how
they relate to the information order on valuations.

AcknowledgementsWewould like to thank the audience at the 2018 Australasian Asso-
ciation for Logicmeeting, and two anonymous referees for their helpful discussion and com-
ments on this material. David Ripley’s contribution was partially supported by the project
“Logic and Substructurality”, grant number FFI2017-84805-P, Ministerio de Economía,
Industria y Competitividad, Government of Spain.

REFERENCES

Bimbó, K. and Dunn, J. M. (2008). Generalized Galois Logics: Relational Semantics of
Nonclassical Logical Calculi. Number 188 in CSLI Lecture Notes. CSLI Publications.
5

Birkhoff, G. (1967). Lattice theory. American Mathematical Society, New York, 3rd edi-
tion. 5

Blasio, C., Marcos, J., and Wansing, H. (2017). An Inferentially Many-Valued Two-
Dimensional Notion of Entailment. Bulletin of the Section of Logic, 46(3/4):233–262.
1, 5, 7, 18

Brink, C. (1993). Power Structures. Algebra Uniersalis, 30:177–216. 11
Carnap, R. (1943). Formalization of Logic. Harvard University Press, Cambridge, Mas-
sachusetts. 4

Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order. Cambridge
University Press, Cambridge. 5

Dunn, J. M. (1991). Gaggle theory: An abstraction of Galois connections and residuation
with applications to negations and various logical operators. In Logics in AI, Proceedings
of European Workshop JELIA 1990, pages 31–51, Berlin. LNCS. 4, 5

Dunn, J. M. and Hardegree, G. M. (2001). Algebraic Methods in Philosophical Logic.
Oxford University Press, Oxford. 5, 17

Erné, M., Koslowski, J., Melton, A., and Strecker, G. (1993). A primer on Galois connec-
tions. Annals of the New York Academy of Sciences, 704(1):103–125. 5

Frankowski, S. (2004). Formalization of a plausible inference. Bulletin of the Section of
Logic, 33:41–52. 1, 5



TWO TRADITIONS IN ABSTRACT VALUATIONAL MODEL THEORY 17

Frankowski, S. (2008). Plausible reasoning expressed by p-consequence. Bulletin of the
Section of Logic, 37(3-4):161–170. 7

French, R. and Ripley, D. (201X). Valuations: Bi, Tri, and Tetra. Studia Logica. 2, 3, 5,
15, 18

Hardegree, G. M. (2005). Completeness and super-valuations. Journal of Philosophical
Logic, 34(1):81–95. 5

Humberstone, L. (1988). Heterogeneous logic. Erkenntnis, 29:395–435. 2, 5
Humberstone, L. (2012). The Connectives. MIT Press, Cambridge, Massachusetts. 1, 2, 4,

5
Malinowski, G. (1990). Q-consequence operation. Reports on Mathematical Logic, 24:49–

59. 1, 5, 7
Ore, O. (1944). Galois Connexions. Transactions of the American Mathematical Society,
55:493–513. 5

Ripley, D. (2018). Blurring: An approach to conflation. Notre Dame Journal of Formal
Logic, 59(2):171–188. 5

Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In Henkin, L.,
editor, Proceedings of the Tarski Symposium, pages 411–436. American Mathematical
Society, Providence, Rhode Island. 1

Shoesmith, D. J. and Smiley, T. J. (1978). Multiple-conclusion Logic. Cambridge Univer-
sity Press, Cambridge. 1, 4, 5, 8, 10, 12, 13, 19

APPENDIX: LEAST SETS OF VALUATIONS IN THE SET-SET FRAMEWORK

Recall that, given a set A of arguments, there is a set Mod(A) = {V ∶ V = A}.
Consider Mod(A) as ordered by ⊆. No matter whether we’re working SET-SET or SET-
FMLA, and no matter whether we’re consideringV4,Vt

3,V
r
3, orV2,Mod(A) has a greatest

element: A. This follows from theorem 1. What we want to answer in this appendix is
the following question: under what conditions does it have a least element? In the body of
the paper we dealt with the four SET-FMLA cases, and in this appendix we’ll look at the
remaining four SET-SET cases.

As above, we begin by looking at what happens when we are considering bivaluations,
since this is the best-known and best-explored area, and we can largely answer our ques-
tion by appealing to or adapting existing results. Second, we turn to the general situation
involving tetravaluations. We follow up by considering in turn both reflexive, as well as
transitive trivaluations.

Bivaluations. It is known (for example [Dunn and Hardegree, 2001, p. 202]) that for any
monotonic reflexive completely transitive set of SET-SET arguments A there is exactly one
set V of bivaluations such that SSV = A. That suffices to answer our question for this
case: there is always a least such V , since there is always exactly one such V .

Tetravaluations. Things get trickier when we go to the tetravaluational case. Here, there
can be multiple distinct V s with SSV = A. For example, for any nonempty V , SSV =
SS(V ∪{v∗}), where v∗ is the valuation assigning ∗ to every formula. (This is because v∗ is
a counterexample only to the empty argument [�], and every valuation is a counterexample
to this argument.)

We will show that when A is a compact monotonic set of SET-SET arguments, then
there is a least set V of valuations with SSV = A. To do this, we first show that there
are certain valuations that must be in any V with SSV = A; then we show that, so long
as A is compact, these valuations alone are enough to determine A precisely. The needed
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valuations are the exact counterexamples to those arguments that are maximally out of A.
We define each of these notions in what follows, proving needed results along the way. (We
earlier defined the notion of exact counterexample for SET-FMLA arguments, but here we
need it for SET-SET.)
Definition 9. Given a SET-SET argument a = [Γ � Δ], its exact counterexample va is the
valuation such that va(�) =

∙ ⊤ iff � ∈ Γ ⧵ Δ,
∙ ⊥ iff � ∈ Δ ⧵ Γ,
∙ ⊥⊤ iff � ∈ Γ ∩ Δ, and
∙ ∗ iff � ∉ Γ ∪ Δ.13

Proposition 8. For any arguments a, b, we have va ⨳ b iff b ⊑ a.14

Proposition 9. For any argument a and any valuation v, we have v ⨳ a iff va ⊑ v.
Proof. Unpacking definitions, in both cases. �

It follows from each of these results that va ⨳ a; an argument’s exact counterexample is
indeed a counterexample. Proposition 8 gives us one sense in which this counterexample
is ‘exact’: it is a counterexample to all and only subsequents of a. Proposition 9 gives us a
different sense: it is information-least among counterexamples to a.

Now, to arguments that are maximally out:
Definition 10. An argument is maximally out of a set A of arguments iff: it is not in A and
any proper superargument of it is in A.
Lemma 6. If A is a set of SET-SET arguments, and the argument c is maximally out of A,
then for any set V of valuations with V = A it must be that vc ∈ V .
Proof. Take any such c, A, V , to show vc ∈ V . Since c ∉ A and V = A, there must be
some v ∈ V with v ⨳ c. By proposition 9, vc ⊑ v. Suppose towards a contradiction that
v ≠ vc . Then there must be some formula � receiving a different value in v than in vc .
Since vc ⊑ v, there are five possibilities:

(1) vc(�) = ∗ and v(�) = ⊤
(2) vc(�) = ∗ and v(�) = ⊥
(3) vc(�) = ∗ and v(�) = ⊥⊤
(4) vc(�) = ⊤ and v(�) = ⊥⊤
(5) vc(�) = ⊥ and v(�) = ⊥⊤

But on any of these possibilities, v is a counterexample to some proper superargument of c:
in the first, third, and fifth cases, the argument adds � to the conclusions of c, while in the
first, second, and fourth, it adds� to the premises. These are indeed proper superarguments:
definition 9, plus what we know about vc(�) in each case, suffices for this. But since c is
maximally out of A, this superargument is in A, and soV ≠ A, which is a contradiction.
Thus, v = vc , and so vc ∈ V . �

13An anonymous referee called our attention to the similarity between this definition and the definition of the
function called ♭ in [Blasio et al., 2017, §5]. These are different functions put to different uses: va is a function
from the language to values, determined by a particular argument; while ♭ is a function from other possible sets of
values to our familiar four values, determined by a particular ‘B-matrix’ (see [Blasio et al., 2017] for definition).
We suspect the referee is onto something, and there may be value in pursuing the analogy between formulas and
arguments on the one hand, and other value spaces and B-matrices on the other.

14In [French and Ripley, 201X], we used proposition 8 as our definition of exact counterexample, and then
used the valuations given in definition 9 to show that they always exist. Here, it’s convenient to take the reverse
approach.
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So every V ∈ Mod(A) must include all the exact counterexamples to those arguments
maximally out of A. This matters when A is compact because there are enough arguments
maximally out of it:

Proposition 10. IfA is compact, then every argument a ∉ A is contained in some argument
c that is maximally out of A.

Proof. Take a compact A and some a ∉ A. Consider the set B = {b | a ⊑ b & b ∉ A} of
all superarguments of a that are not in A. Every ⊑-chain in B has an upper bound in B: if
the chain is finite, its maximummember will do; and if it is infinite, its sequent join will do.
(Note that Compactness is needed at this step to ensure that these joins are ∉ A). But then
by Zorn’s lemma, B has a maximal element c. Since c ∈ B, we know a ⊑ c and c ∉ A.

To show that c is maximally out of A, it remains only to show that any proper superar-
gument d of c is in A. But if there were some c ⋤ d where d ∉ A, then d would have to
have been in B, and so c would not be maximal in B after all. �

This is enough now for the theorem.

Theorem 13. If A is a compact monotonic set of SET-SET arguments, then there is a least
V ∈Mod(A).

Proof. By lemma 6, any V ∈ Mod(A) must be such that V0 =
{vc | c is maximally out of A} ⊆ V . So if V0 = A, then V0 ∈ Mod(A) and
we’re done. Showing this has two phases: that V0 ⊆ A and that A ⊆ V0.

First, thatV0 ⊆ A. Take any a ∉ A. By proposition 10, there is some c maximally out
of A with a ⊑ c. Since c is maximally out of A we have vc ∈ V0, and by one direction of
proposition 8 we have vc ⨳ a. So a ∉ V0.

Second, that A ⊆ V0. Take any a ∉ V0; this has some counterexample vc ∈ V0. By
the other direction of proposition 8, a ⊑ c. But since c is maximally out of A, it is at least
out of A; and since A is monotonic, a ∉ A. �

Reflexive trivaluations. If A is a reflexive set of arguments, then the general story carries
over immediately, owing to lemma 5. So when A is reflexive and compact, the least set of
tetravaluations determiningA (which exists by theorem 13) is a set of reflexive trivaluations
by lemma 5, and thus a least set of reflexive trivaluations determining A.

Transitive trivaluations. For transitive trivaluations, the reasoning is not so immediate,
because there is no result analogous to lemma 5 available for complete transitivity and tran-
sitive trivaluations.15 But we can still make our way to the corresponding result; restricting
our attention to completely transitive sets of arguments gives us extra tools to work with.

Proposition 11. If A is monotonic and completely transitive, and [Γ�Δ] is maximally out
of A, then Γ ∪ Δ = .

Proof. Suppose A is monotonic and completely transitive, and [Γ�Δ] is maximally out of
A, but that Γ∪Δ ≠ . Then there must be some � ∈  with � ∉ Γ∪Δ. So both [Γ�Δ, �]
and [�,Γ � Δ] are proper superarguments of [Γ � Δ]. Since [Γ � Δ] is maximally out of
A, both of these superarguments must be in A. But then since A is completely transitive,
[Γ � Δ] ∈ A; contradiction.16 �

15Indeed, 4A ⊈ Vt
3 unless 4A is empty, but so long as A is monotonic we have 4A = A.

16The full strength of complete transitivity wasn’t needed here; the weaker property [Shoesmith and Smiley,
1978] calls ‘cut for formulas’ is enough. But since we’re only going to apply proposition 11 in cases where
we’re also assuming compactness, and since in the presence of compactness cut for formulas suffices for complete
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This is now enough to proceed.

Theorem 14. If A is a monotonic, completely transitive, and compact set of SET-SET ar-
guments, then there is a least set V of transitive trivaluations determining it.

Proof. As in the proof of theorem 13, the desired set is the set of exact counterexamples to
those arguments maximally out of A. As we have seen in that proof, this set is the least set
of tetravaluations determining A. So as long as it is itself a set of transitive trivaluations,
we’re done. By proposition 11, every [Γ � Δ] maximally out of A is such that Γ ∪ Δ = .
Consulting definition 9 reveals that the exact counterexample to any such argument cannot
use the value ∗, and so is a transitive trivaluation. �

transitivity, it wouldn’t be worth stating the slightly stronger formulation of proposition 11 that its proof makes
possible.
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