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Abstract The principle of tolerance characteristic of vague predicates is sometimes
presented as a soft rule, namely as a default which we can use in ordinary reason-
ing, but which requires care in order to avoid paradoxes. We focus on two ways in
which the tolerance principle can be modeled in that spirit, using special consequence
relations. The first approach relates tolerant reasoning to nontransitive reasoning; the
second relates tolerant reasoning to nonmonotonic reasoning. We compare the two
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approaches and examine three specific consequence relations in relation to those,
which we call: strict-to-tolerant entailment, pragmatic-to-tolerant entailment, and
pragmatic-to-pragmatic entailment. The first two are nontransitive, whereas the latter
two are nonmonotonic.

Keywords Sorites paradox - Vagueness - Strict—tolerant logic - Nontransitive
consequence - Nonmonotonic consequence - Noncontractive consequence -
Pragmatic reasoning

1 Introduction

According to one influential view of the sorites paradox, the tolerance principle—the
constraint whereby if someone is tall, for example, then someone whose height is
imperceptibly shorter is tall too—is an unsound rule of reasoning (see Williamson
1994). In combination with further premises that look less controversial, it leads to
contradiction. We therefore ought to reject it, and not to rely on it when reasoning with
vague predicates.

There are reasons to think of such a view as too drastic and as missing out on the role
that such a principle plays in categorization and in ordinary judgmental and inferential
practice (see van Rooij 2011b; Egré 2015). Taking a different perspective, the tolerance
principle ought not to be discarded that fast, even when viewed normatively. Instead,
it corresponds to what some authors have called a soft constraint (see Maudlin 2008),
or a default (Cumming 2014), namely a rule that we can use legitimately in reasoning,
but that cannot be used without some care.

One way to represent the tolerance principle is as a certain conditional sentence,
of the form: Pa A a ~p b — Pb (where a ~p b means that a and b are similar
in P-relevant respects, e.g. having similar heights relative to “tall”’). Another way is
as an argument, of the form: Pa,a ~p b + Pb. Let us consider the conditional
version first. Various options have been proposed to deal with the tolerance condi-
tional as a soft constraint. In standard fuzzy logic, for example, the idea is to think
of that conditional as not perfectly true, but close-to-perfectly-true. Let us assume
the conditional to be Lukasiewicz’s conditional (see Goguen 1969), and call a sen-
tence close-to-perfectly-true provided its degree of truth is 0.9. Given an appropriate
sorites sequence (for example a series of individuals from clearly short to clearly tall,
whose adjacent members differ imperceptibly in height), it will be possible to have:
Pa; — Pay close-to-perfectly-true, Pay — Pas close-to-perfectly-true, without
having Pa; — Pa;3 close-to-perfectly-true. That is, each tolerance conditional is true
to degree at least 0.9, but the resulting conditional itself may end up with a degree of
truth less than 0.9. If validity is defined as the preservation of perfect truth (degree
1) from premises to conclusions, modus ponens remains a valid rule, but the toler-
ance principle, though close-to-perfectly-true, is not true enough to produce a sound
argument, in the sense of a valid argument based on perfectly true premises. Another
possibility therefore is to define validity as the preservation of close-to-perfect-truth,
for instance having a degree at least 0.9. In that case the tolerance principle can be
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sound in the sense of being close-to-perfectly-true, but modus ponens is no longer
valid, and the conditional is no longer transitive (Williamson 1994, p. 124).l

Further options for the definition of validity exist. Smith (2008) proposes that an
argument is valid iff when all premises are strictly greater than 0.5, the conclusion is
greater or equal to 0.5. The option is very similar to the one we pursue below. In partic-
ular it relies on a standard conditional connective, and yields ordinary classical logic.?

There is also the kind of definition of validity suggested in Edgington (1997). On
this approach, an argument is valid iff the conclusion can never fall as far short of
perfect truth as the sum of the extents to which the premises fall short of perfect truth.
Edgington does not use Lukasiewicz’s truth-degree conditions for her connectives,
and so arrives at classical logic this way. But using Lukasiewicz’s truth conditions,
this would again result in a distinct logic, one that validates modus ponens but is
noncontractive. We discuss noncontractive approaches to vagueness in Sect. 2.3.

An alternative to the fuzzy strategy is to view the tolerance conditional as expressing
a defeasible rule. Say that Pa A a ~p b — Pb is true provided Pb is true in all
(Pa N a ~p b)-normal worlds [see Hu 2015; based on Asher and Morreau 1991].
Call aworld (¢ Aa ~p P)-normal if a is P-similar to b but is not close to a borderline
case of P.From PaAa ~p b, PaNa ~p b — Pb,itneed not follow that Pb, since
a world may satisfy Pa A a ~p b without being (Pa A a ~p b)-normal, precisely
when b is a borderline case of P. Again, this conditional fails to satisfy modus ponens,
and it is also nontransitive. But moreover it is nonmonotone, since a world that is
Pa AN a ~p b-normal need not be Pa A Pc A a ~p b-normal. On that view, the
tolerance conditional represents a defeasible rule, usable except in cases in which the
main premise itself does not correspond to a normal world.

Both the fuzzy approach and the nonmonotonic approach have some appeal. On
some understandings of fuzzy consequence, the sorites paradox is solved by saying
that modus ponens is not valid. On the nonmonotonic approach, the sorites paradox is
solved by saying that modus ponens is a defeasible rule: premises in sorites arguments
are assertible, but the argument is not undefeasibly valid. However, the nonmonotonic
approach faces a limitation, which concerns the treatment of the tolerance principle
in terms of a special conditional connective. As is well known, a sorites argument
can be stated using only conjunction and negation, by saying that it is not the case
that there are two cases a and b that are very similar, but are such that Pa and not
Pb. But a nonmonotonic treatment of the conditional does not tell us how to address
that alternative version of the sorites. The situation in fuzzy logic is better. Relative
to Lukasiewicz’s conditional, it is possible to define a strong conjunction & such that
the degree of truth of (A — B) is always equal to the degree of truth of —~(A&—B).3
However, the Lukasiewicz conditional loses some features that one might wish to

! Williamson discusses a generalization of that notion of validity, as proposed by Machina (1976): an
argument is valid iff the degree of the conclusion cannot be lower than the infimum of the degrees of the
premises. This amounts to considering the preservation of close-to-prefect-truth over all possible thresholds;
as such, modus ponens is not valid on this definition either.

2 We give a detailed comparison between our approach and Smith’s approach in Cobreros et al. (2017).

3 Bukasewicz’s conditional is defined algebraically as min(1, 1 — x 4 y), and the strong conjunction or
t-norm corresponding to it as max(x +y — 1, 0).
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retain for a conditional, such as contraction. Relative to the loss of modus ponens, this
may not stand as a significant cost, but we would favor an approach that preserves
more of the regular features of the standard conditional.

In this paper therefore, we are interested in accounts of vagueness that, instead
of relying on a special conditional connective, propose to capture the tolerance
principle by imposing specific constraints on the consequence relation, in a way
that leaves intuitively desirable properties of a conditional connective in place, and
in a way suitable to deal with the sorites argument in its conjunctive form as well
as its conditional one. More specifically, we compare and discuss various structural
choices that can be made on a consequence relation in order to make the tolerance
principle valid, when represented not merely as a conditional sentence, but also as a
rule, namely as an argument of form: Pa,a ~p b = Pb. Our main focus is on two
structural approaches which mirror the nontransitive and nonmonotone conditional
to some extent, but shift those properties up one level, namely to the consequence
relation. The first is the nontransitive treatment of logical consequence favored in
our past work, on which the principle of tolerance comes out as valid in rule form,
but cannot be iterated without risk.* The second is the nonmonotone treatment of
logical consequence, on which the principle of tolerance too can come out as valid,
but in a way that is sensitive to context and to the addition of further premises (soft
consequence as defeasible consequence) (see Misiuna 2010; Hu 2015).

This paper compares three notions of entailment, starting with strict-to-tolerant
entailment (see Cobreros et al. 2012), which links the tolerance principle to nontran-
sitive reasoning. We discuss two elaborations of sz-entailment, based on the idea of
pragmatic strengthening. Those two variants differ in that they both treat the tolerance
principle via nonmonotonic reasoning. The first of those variants combines nontransi-
tivity and nonmonotonicity, whereas the second, though nonmonotonic, remains fully
transitive. Our broader agenda is to compare those three notions, and to discuss their
relative merits and limitations.

In Sect. 2, we start off with an overview of various structural choices that can be
made on a consequence relation in order to block the sorites paradox, that is we survey
several nontransitive, nonmonotonic, and noncontractive approaches. In Sect. 3, we
focus on the nontransitive approach favored in our past work on strict—tolerant validity,
and highlight some motivations for the definition of a generalized notion of pragmatic
entailment on that basis, of which two variants are considered, which we call Prt-
entailment and Pr Pr-entailment. In Sect. 4, finally, we compare the three systems
under discussion, and draw more general lessons for the modeling of reasoning with
vague predicates.

2 Transitivity, monotonicity, contraction

In this section we consider three structural properties of particular interest in relation
to soritical reasoning, namely transitivity, monotonicity, and contraction. Although
noncontractive approaches will not play a role in our subsequent inquiry, they are

4 soft consequence as permissive consequence, see Cobreros et al. (2015b) for an overview.
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worth considering too, in particular because of some analogies with nontransitive
treatments.

2.1 Transitivity

Here, we will call a consequence relation - ‘transitive’ iff whenever I' - ¢, A and
I",¢ = A/, then I, T” = A, A’> (We assume that I and '’ are read conjunctively,
while A and A’ are read disjunctively.) Many consequence relations obey this
condition (indeed, sometimes this is required as part of how ‘consequence relation’
is understood!); but in recent years, there has been increasing interest in systems that
do not. (For examples, see Frankowski 2004; Hallnds 1991; Hallnds and Schroeder-
Heister 1991; Tennant 1987; Weir 1998; Zardini 2008. Of these, only Zardini 2008
focus on vagueness.) We have ourselves explored several nontransitive systems in
our past work, for example in Cobreros et al. (2012, 2013, 2015a); here, we focus on
the kind of nontransitive approach to vagueness we recommend.®

On this approach, tolerance is not merely a formula that may occur or not in an
argument; its effects are internalized in the consequence relation itself. In the system
st of Cobreros et al. (2012), for example, Pa,a ~p b = Pb. Note that no statement
of tolerance occurs in this argument, and yet st validates it: the argument itself is
a statement of tolerance. On this approach, the claim that a is P, together with the
claim that a is P-similar to b, directly entails, without need for any further claims, the
claim that b is P. We are most interested in systems with this feature, whatever their
structural properties, and we will aim to internalise tolerance into the consequence
relations we explore throughout the paper.

If we combine this kind of principle with transitivity, we can reason as follows:

Pag,ap ~p a1 - Pa Paj,a; ~pax b Pap
Pag,ap ~p ai,a1 ~p ar - Pap Pay,ay ~p a3 - Paj

Trans

Trans
Pag,ap ~p ar,ay ~p az,az ~p az = Pas

In this way, we can reach Pag,ao ~p ai, ...,an—1 ~p a, = Pa, for any n. Call
this ‘n-fold tolerance’. n-fold tolerance seems to be a problem: the similarity premises
here are exactly the setup for a sorites sequence for P, and this tells us that they entail,
together with the claim that the first member of the sequence is P, that the last member
is also P. That, of course, looks much like falling victim to the sorites paradox.

In a moment, we’ll see that there are ways one might choose to live with n-fold
tolerance, ways that do not fall victim to the paradox—but for now, let’s assume it’s

5 There is no single thing people mean when they call a consequence relation ‘transitive’, but this is one
very standard understanding, and the differences don’t matter for our purposes here. For some details, see
Ripley (2017).

6 The approach of Zardini (2008) is similar to ours in many ways, and indeed forms part of the original
inspiration for our approach. However, this approach does what we have said above we will not do: it
introduces a new connective, not otherwise motivated, to play the role of the conditional in statements of
tolerance. We set further comparison aside.
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to be avoided. The only ingredient here is transitivity itself; once tolerant reasoning
is internalised in this way, there is no place else to push back on the above reasoning.
One possible response, then, is to reject transitivity, to say that each individual step
of soritical reasoning is indeed valid, but that chaining these valid steps together does
not preserve their validity.’

This kind of approach allows appeal to tolerance, as internalised in the consequence
relation, once but not more than once. This, then, is one way to understand tolerance’s
soft status; it can be appealed to freely, but we cannot combine the results of multiple
appeals.

So much for internalised tolerance; what about formula-level statements of toler-
ance, like VxVy((Px A x ~p y) — Py)? If tolerance is really internalised in the
consequence relation itself, you might expect such formulas to be theorems of the
consequence relation: valid consequences of the empty set of premises. Indeed, this
is exactly what happens in the systems we have explored elsewhere.

But you might also expect these tolerance formulas to be suppressible: to be such
that, when an argument with a tolerance formula among its premises is valid, then
the corresponding argument without that tolerance formula among its premises is also
valid.® When a consequence relation is transitive, in the sense we’ve given here, all of
its theorems are suppressible, since the move fromk+ AandI', AF AtoI" - Ais just
an instance of transitivity; but for nontransitive relations this need not be the case. (For
the converse direction, it is reflexivity that matters; so long as each formula entails itself,
suppressible formulas are theorems, since we can move from A - A to - A simply
by suppressing A. We do not consider nonreflexive consequence relations here.)

In fact, tolerance formulas are not suppressible in the systems we have explored else-
where; although tolerance is internalised in these consequence relations, still including
a formula-level statement of tolerance as a premise can have an effect. This gives
another way to understand tolerance’s soft status. A consequence relation, at least
when it is nontransitive, can give two kinds of endorsement to a formula: the weaker
endorsement of theoremhood and the stronger one of suppressibility. Tolerance for-
mulas receive the weaker endorsement but not the stronger; they are given, but not
completely.

2.2 Monotonicity

A consequence relation |- is monotonic iff whenever I' = A, then I', I = A, A’; that
is, if adding premises and/or conclusions to a valid argument can never result in an
invalid argument. Nonmonotonic logics provide one of the most usual ways to under-
stand defeasible reasoning, since they allow for validity to depend on the absence of
certain information, and so to be defeated when such information arises. A standard
example for this type of reasoning is the following: if a timetable does not mention

7 As we show in Cobreros et al. (2012), this is compatible with preserving the validity of every classically-
valid argument; the breaks in transitivity can be restricted to those places where the tolerant aspect of the
consequence relation has been appealed to repeatedly.

8 As far as we know, there is no standard term for what we are calling ‘suppressible’; we take the term
from (Routley et al. 1982, pp. 140ff.)’s discussion of ‘suppression’.
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any direct flight from A to B, we routinely assume that no such flight exists, which, in
turn, allows the planner to represent this information simply by not listing such a flight.
This type of pragmatic reasoning is called in Al ‘Reasoning as Failure’ and is made
use of in various nonmonotonic logics (e.g. McCarty’s Circumscription and various
variants of Logic Programming). It has been used as well in linguistics to account,
among others, for the progressive (Asher 1992), generics (Asher and Morreau 1995),
discourse structure (Asher and Lascarides 2003), several types of Gricean conversa-
tional implicatures (Schulz and van Rooij 2006), and even swear words (McCready
2012) (see Thomason 2011; van Rooij and Schulz 2011, for overview). The Sorites
paradox is not standardly approached from a pragmatic point of view. It is perhaps not
surprising, then, that there are not so many approaches to the sorites paradox based
on nonmonotonic logics. However, there are some.

Approaches to tolerance that turn on rejecting monotonicity can be found in Hu
(2015) and Misiuna (2010).° Both Misiuna and Hu offer pictures involving new con-
nectives to play the role of the conditional in tolerance principles, and so run afoul
of the argument we’ve offered above involving conditional-free sorites.!? However,
the way in which nonmonotonicity is involved can be maintained without a special
conditional.

The basic idea behind these nonmonotonic approaches is to validate reasoning
according to tolerance, but only when no countervailing information is available.
That is, given only the premises Pa and a ~p b, we can validily conclude Pb.
Indeed, given the premises Pag, ap ~p ai, ay ~p az, ..., y—1 ~p dy, ONe may
validly conclude Pay; these approaches validate n-fold tolerance.'! However, in the
presence of certain extra information—for example, the additional premises a, ~p
ap+1 and —Pa,1—this conclusion would not validly follow. As Hu (2015) puts
the point, “sorites reasoning is...not...inherently defective or never worth utilizing,
but...unproblematic in many instances, so long as it is not carried out too far down a
sorites series”.

This, then, gives a way to accept the validity of n-fold tolerance. The problem, on
a nonmonotonic view, is not with concluding Pa, on the basis of such a chain of
tolerant reasoning; the problem occurs when such a conclusion is maintained in the
face of countervailing evidence. Such countervailing evidence, of course, is present
when we confront a sorites series; the puzzle is created precisely because we know that
the last things in the series don’t satisfy the relevant predicate. This is, then, the way in

9 The combination of nonmonotonicity with fuzzy logic has been explored in some artificial intelligence
applications (for example in Ray and Chakraborty 2011; Zhang 2003), but these applications have not
specifically addressed either tolerance or the sorites paradox, as far as we know.

Bennett (2006) includes a brief discussion of a nonmonotonic approach to the sorites, but without developing
any details. Our account to follow fits nicely with the picture Bennett sketches, but other accounts easily
could as well.

10 Indeed, Hu (2015) considers a version of this argument, and concedes in response that his account “fails
to speak to the proper evaluation of the original sorites argument”.
' Misiuna (2010) claims that a similar argument is invalid in the system recommended there, but as far as

we can see this is an error; the models O that Misiuna calls ‘most consistent’ in §6 do not actually seem to
be.
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which we can understand tolerance’s soft status within the nonmonotonic approach:
tolerance can be appealed to repeatedly, but it gives way in the face of a sorites series.

How does this kind of nonmonotonic approach compare to the kind of nontransitive
approach we have discussed above? Both agree that tolerance can be appealed to at the
beginning of a sorites series, but not farther down. However, they see this in different
ways. On a nontransitive approach, tolerance gives out from exhaustion as we proceed
down such a series; it simply cannot go that far. On a nonmonotonic approach, it gives
out only when it meets opposition; on its own it can proceed arbitrarily far.

There is another difference worth noting as well. Whereas the nontransitive
approach allows for drawing conclusions that cannot be drawn on as premises, non-
monotonic approaches typically do not; for the nonmonotonician, once something
cannot be drawn on as a premise it must also be withdrawn as a conclusion. >

2.3 Contraction

We will explore the third property—contraction—in less depth in the course of this
paper, but we pause to present it here nonetheless, as it certainly provides another
family of approaches worth considering. A consequence relation - is contractive iff:
whenever I', ¢, ¢ = A, then I, ¢ = A, and whenever I' - ¢, ¢, A, then " - ¢, A.
(Good introductions to a variety of noncontractive logics can be found in Restall 2000;
Paoli 2002; Bimb6 2015.)

In noncontractive logics, the number of times a premise or conclusion is appealed
to may matter for validity.!> An argument that repeats a premise three times, say, may
be valid, while a similar argument that only repeats the premise twice is not. This
has been interpreted in a variety of ways; the way most relevant for our purposes is
perhaps that of Slaney (2010).'4

On the approach Slaney presents, the crucial failures of contraction involve precisely
the tolerance principle. Note that, in a sorites argument with the tolerance principle
as a premise, this principle must be appealed to many times—once for each step in
the sorites series. This, then, provides us another way to think of tolerance as a soft or
defeasible principle: perhaps it is a principle we may appeal to only a limited number

12 This is very like the difference (Hu 2015, fn. 37) sees between his account and the one of Kamp (1981).

13 The same is true of certain logics that fail monotonicity; where noncontractive logics can invalidate
arguments with foo few occurrences of some premise or conclusion, nonmonotonic logics can invalidate
arguments with oo many occurrences. Oversimplifying things, there are two nonmonotonic traditions: the
default tradition and the substructural tradition; these traditions have some commonalities, but a large
number of differences, not least in intended applications. The former tradition, which is what we have
focussed on in Sect. 2.2, tends not to care about number of occurrences in this way; in default logics, adding
new formulas to a valid argument can result in a invalid argument, but adding new occurrences of formulas
that are already present cannot. However, the latter tradition pays a great deal of attention to number of
occurrences. For an overview of this aspect of relevant logics, see Meyer and McRobbie (1982a,b); in other
nonmonotonic logics of the substructural tradition the situation is similar.

14 Note that a variety of many-valued approaches to vagueness, based on Lukasiewicz and related logics,
are in fact noncontractive if looked at in a certain light. These include the approaches of Lakoff (1973),
Machina (1976) and Slaney (2010). For useful discussion, see Paoli (2003). Recall the Introduction.
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of times in any argument, a principle that holds once (or twice, or three times) but not
an unlimited number of times.

Of course, to fully make sense of this we would need to have an understanding
of what it is for something to hold only once (or twice, or three times). We will
not attempt to make this idea precise here. The rough idea, however, is that in the
absence of contraction, we can allow for principles like tolerance, which are meant to
be defeasible, to be appealed to a limited number of times. When they are defeated,
in a setting like this one, it is in a battle of attrition.

These noncontractive approaches share a certain flavour with nontransitive
approaches: according to both, we have something that can be appealed to without any
worry or caveat, but only a limited number of times. On nontransitive approaches, it
is the consequence relation itself that is like this; on noncontractive approaches, it is
the tolerance principle.

Uniquely among the three kinds of structural approach we consider, there does
not seem to be a way for a noncontractive approach to internalise tolerance in the
consequence relation itself, at least not if the sorites is to be addressed by failures of
contraction. The reason is that noncontractive consequence relations can only prevent
multiple uses of things that actually appear as premises or conclusions, but tolerance
itself is the only thing appealed to repeatedly in a sorites argument. If this repeated
appeal is to be blocked, then, tolerance cannot be internalised; it must appear explicitly.
For this reason, we set noncontractive approaches to tolerance aside for the remainder
of the paper.

3 From nontransitive to nonmonotonic

In previous work we showed how can we endorse tolerance as a soft constraint within
the context of non-transitive entailment. This way of endorsing tolerance has the
consequence, to which we pointed out above, of making a difference between the
endorsement of a formula as a theorem and as a suppressible premise. In our non-
transitive framework tolerance, as explicit formula, is endorsed in the former but not
in the latter sense. But there are reasons for which one would like to endorse tolerance in
a stronger sense; for example, to be able to properly assert tolerance in some contexts.
In arelatively independent discussion, in response to objections raised in Alxatib et al.
(2013), we developed a notion of pragmatic interpretation. In this section we show
how this can be used to go from our original non-transitive account of tolerance to a
non-monotonic endorsement of tolerance.

3.1 The logic st

Let M = (D, TI), with 7 a total function from atomic sentences to {0, % 1}. This

model extends to formulas according to the strong Kleene valuation scheme: !>

15 We assume here for convenience that each d € D has a name d; this bears no weight in the account.
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o V(o) = Zp(e),if ¢ is atomic.

e Vypm(=¢) = 1-=Vum(e).

o V(o AYy) = min{Vam(d), V().

e V(o Vvy) = max{Va(d), Vm )}

e Vy(Vx¢) = min{V(%/x]1¢) :d € D}.

We say that ¢ is strictly true in M iff Vo (¢) = 1, and that ¢ is tolerantly true in
Miff VY (¢) = % In terms of this semantics we can define some well-known logics:
Kleene’s K3 and Priest’s L P. Both logics understand entailment as preservation of
truth in all models, the difference is that while for K3 truth it means strict truth, for
L P it means tolerant truth:

I" Ex3 A justin case for all M :

if¥y €T :Vp(y) =1, then3s € A : Vpy(8) = 1.
' Erp A justin case for all M :

ifVy eI : Vpm(y) >0, then3dd € A : Vp(5) > 0.

A fundamental idea in Cobreros et al. (2012) to define entailment from strict to
tolerant:

[ B A just in case for all M :
ifVy e :Vpm(y) =1, then3ds € A 1 Vp(5) > 0.

Thus, although we don’t give up the idea that entailment is truth-preserving, we
allow the standard of assertion of the conclusions to be weaker than the standard
of assertion of the premises. A surprising feature of this logic is that although the
semantics makes use of three truth-values, the consequence relation is exactly the
familiar consequence relation of classical logic. This fact contrasts sharply with K3
and L P, both of which give up a good amount of classically valid arguments.

Now, despite its classicality, this new semantics makes room for tolerance without
falling victim to the sorites paradox. In order to account for tolerance, we extend the
language with similarity relations, ~p, one for each predicate P. There are various
ways to interpret this relation that would work for our purposes. One interpretation is
the following, taken up in Cobreros et al. (2015a):

e Vrq(a ~p b) =1iff [Vprp(Pa) — Vg (Pb)| < 1, 0 otherwise.

The resulting logic st™ is a conservative extension of classical logic, in the sense
that any classically valid argument in the old vocabulary remains valid. In addition,
the tolerance formula (Vx, y((Px A x ~p y) — Py)) becomes valid, as does the
tolerance argument: Pa,a ~p b F*! Pb.1° The endorsement of tolerance does not
lead to paradox, however, since tolerance in st~ leads to non-transitivity:

16 Ripley (2013) and Cobreros et al. (2013) show a similar result for a language with a transparent truth-
predicate.
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Pa,a ~p bE! Pband Pb,b ~p c E! Pc
BUT
Pa,a ~p b,b~pckE! Pc.

We felt, and still feel, that this is a very intuitive and appealing treatment of the
sorites paradox. The treatment however, comes with the limitation that we should make
a distinction about the diagnosis of the sorites paradox depending on its formulation.
If we look at the sorites as a step-by-step argument based on the validity of tolerance
inferences then, though each tolerance inference is valid, validity breaks when we
try to chain these inferences. If we consider the sorites argument with the tolerance
formula (Vx, y((Px A x ~p y) — Py)) as an explicit premise, then although that
formula is valid, the resulting argument is valid but unsound; it fails to establish its
conclusion, since tolerance cannot be freely drawn on as a premise. In short, although
the tolerance formula is valid, according to the logic st~ we are not in a position to
draw on it as a premise without further ado. However, there are contexts in which we
would like to assert the tolerance formula and go on to draw conclusions from it. That
is, we would like to assert it strictly. But there are other assertions we might want
to make that signal only that something can be validly concluded, not that it may be
drawn on as a premise. In these cases, we want to assert folerantly. That is, when we
make an assertion we would like to interpret it sometimes tolerantly and sometimes
strictly.

A number of recent experiments (e.g., Alxatib and Pelletier 2011; Ripley 2011; Egré
etal. 2013; Egré and Zehr 2016) show that naive speakers find a logical contradiction
like ‘John is tall and John is not tall’ acceptable in cases where John is a borderline tall
man. This seems to show that we need to take account of tolerant truth, since tolerant
truth exhibits this exact behaviour. However, just relying on the notion of tolerant truth
would mean that the assertion ‘John is tall’ would be acceptable in the same situation.
The same experimental evidence shows, however, that this is not the case: ‘John is tall’
is taken to be acceptable only if John is really tall. In terms of our three-valued models
this could be modeled by saying that the assertion ‘John is tall’ is acceptable only if
John is strictly tall. Similarly, Serchuk et al. (2011) found that classical tautologies
like ‘Tj v —Tj’ are generally not accepted if John is borderline tall. So making use
not only of tolerant, but also of strict truth (which exhibits this latter behavior) seems
required.

The conclusion we draw from the previous discussion, together with considerations
raised in Cobreros et al. (2012, 2015a), is that we should interpret a sentence strictly
if possible, and tolerantly otherwise. This interpretation strategy is in line with a usual
strategy to account for scalar implicatures: where Grice (1967) assumed that from an
assertion of the form ‘¢ Vv ¥/’ one can conclude that it is not the case that ¢ Ay is true,
because otherwise the speaker would have said so, we can assume that from assertion
‘¢’ one can conclude that ¢ A —¢ is not true for a similar reason. The strategy to
interpret strictly if possible, and tolerantly otherwise, has just this effect.

Unfortunately, this interpretation strategy taken at face value gives rise to trouble
for more complex sentences. Alxatib et al. (2013) show that this wrongly predicts that
a sentence like ‘Adam is tall and not tall, or John is rich’ entails that John is strictly
rich, although it should not entail this and intuitively should mean that either Adam

@ Springer



Synthese

is borderline tall or John is strictly rich. In Cobreros et al. (2015b) we responded by
providing a more sophisticated pragmatic interpretation rule to strengthen the meaning
of a sentence, which we review below.!”

3.2 Pragmatic interpretation
3.2.1 Truth-makers

To account for this pragmatic strengthening we will make use of truth-makers. We
propose that the pragmatic interpretation of ¢ makes one exact truth-maker of ¢ as
true as possible. To determine what the truth-makers of a sentence are, we follow van
Fraassen (1969).

We think of a state of affairs as a situation that might hold or might not hold. The
state of a affairs that Socrates is wise holds iff the sentence ‘Socrates is wise’ is true.
The state of a affairs Socrates is not Cretan holds if the sentence ‘Socrates is not
Cretan’ is true.'® 12 A fact is any non-empty set of states of affairs. We call facts
that contains only a single state of affairs, like {Socrates is wise}, an atomic fact. This
atomic fact is a truth-maker for the sentence ‘Socrates is wise’ but also the conjunctive
fact {Socrates is wise, Socrates is not Cretan} is a truth-maker for that sentence.

More generally, let SO A be the set of all states of affairs. For each state of affairs
p € SOA there is a corresponding complement p € SOA for which it holds that
p = p. We assume for simplicity a close correspondence between atomic sentences
of the language and states of affairs: there is exactly one state of affairs corresponding
to each literal. The set of facts, F, is g (SO A) — ¢: that is, a fact is a non-empty set
of states of affairs. If p, q € SOA, then {p} and {q} are atomic facts, and {p, q} is a
conjunctive fact. A truth-maker for a sentence ¢ (or the proposition expressed by that
sentence) is a fact that makes ¢ true. We follow van Fraassen further in saying that an
atomic sentence might have more than one truth-maker. An atomic sentence p is not
only made true by atomic fact {p}, but also by conjunctive fact {p, q}. The former is
a more minimal truth-maker than the latter. More interestingly, disjunctive sentences
might have several minimal truth-makers. The disjunction p V ¢, for instance, has
two minimal truth-makers: {p} and {q}. What we are after, however, is the notion
of what Fine (2014) calls the exact truth-makers for ¢p. We say that the disjunction
p V (p A g)—although it has only {p} as its minimal truth-maker—has two exact
truth-makers: {p} and {p, q}. Following van Fraassen (1969), we give the following

17 Other pragmatic strategies can be proposed that would agree with the idea of interpreting a sentence
strictly if possible. See Egré and Zehr (2016) for a proposal to compute pragmatic strengthening more
locally, and for comparisons with the algorithm in Cobreros et al. (2015b). Both approaches can answer the
challenge raised by Alxatib et al., but they make different predictions in other specific cases.

18 1f one doesn’t like states of affairs, one can always think of them in a purely linguistic way simply as
literals: atomic sentences and their negations.

19 One might think that we don’t really have negative state of affairs, that —p is true not because p is the
case, but rather because some q is the case that is incompatible with p. On such an approach, ‘This is green’
might have more than one falsity-maker: “This is red’, “This is blue’, etc. For related ideas, see Millikan
(1984, Ch. 14). Although such an analysis of falsity would be interesting, for simplicity we stick with van
Fraassen’s original proposal.
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simultaneous recursive definition of the set of exact truth-makers of ¢, T (¢), and the
set of exact falsity-makers, F' ((]5):20

T(p) = {{p}} F(p) = {{p}} for atomic p

T(—¢) = F(9) F(=¢) =T(¢)

T@AY) =TT W) Flpny) =F(p)UFW)
={XUY|XeT(@).YecTW)}

T@vy) =T@UTH) Flpvy) =F(p)®FW)

Notice that according to these rules, T (p) = {{p}}, T(—p) = {{p}}, T(p V q) =
{{p}, {q}} and T (p A q) = {{p, q}}. We analyse conditionals like ¢ — 1 as material
implication, thatis p - g = —-pVvgand ~(p Agq) = —p VvV —g,and thus T (p —
q) = {{p}. {q}} and T'(—=(p A ¢)) = {{p}. {@}}-

To account for quantifiers, we first have to spell out how we interpret atomic sen-
tences with predicates and individual terms. To do so, we assume that for each n-place
predicate P the model contains states of affairs like Pdy, ...dy, with each dj € D
an individual. We assume for simplicity that each d € D has a unique name d in the
language.

o T(Pdi,....dy) = {{Pd1,....ds}}  F(Pdi,....dy) = {{Pdy,...,dn}}
e T(Vxp) = Qucp T @ /al) FOVx¢) = Ugep F(P*/aD)
e T3x¢) = Ugep T@*/aD) FEx¢) = Qguep F(P[*/al)

Observe that T (Vx Px) = T (Pa) @ T (Pb) = {{Pa, Pb}},if D = {a, b}. Similarly,
T(3xPx) = T(Pa) U T(Pb) = {{Pa}, {Pb}}. Notice that facts might not only be
incomplete (neither verify nor falsify a sentence), they might also be inconsistent and
both verify and falsify a sentence. Indeed, we have not ruled out facts like {Tj, T_j}.
Such inconsistent facts are crucial for us to model the meaning of vague sentences,
expressing in this case that John is borderline tall.

T (¢) can be thought of as a fine-grained semantic interpretation of ¢. It can be
used to determine a truth-conditional meaning for ¢ in terms of possible worlds, so
long as we have some set W of worlds, understood as special facts:

11 <

{weW[3feT@): f<Swh ey
It is usual, however, to suppose that not just any fact counts as a world; and depending
on what restrictions are or are not imposed, this truth-conditional meaning can behave
in different ways.2! On one standard approach to worlds that fits with this setup, worlds
are taken to be complete and consistent facts. That is, a world is a set w of states of

20 Note that the definition of T (¢) parallels the construction of the disjunctive normal form of ¢: truth-
makers basically correspond to disjuncts of such a normal form, and their members to conjuncts of the
corresponding conjunctions.

21 One might consider the totally unrestricted case, modeling the meaning of a sentence as the set of all
facts that make it (perhaps inexactly) true. If F is the set of all facts, we can define the following semantic
Footnote 19 continued
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affairs such that for each atomic sentence p in the language, eitherp € worp € w and
not both. For our purposes, however, this will not work; it gives us no way to capture
the difference between strict and tolerant satisfaction at a world, and so prevents us
from connecting this approach to our initial three-valued setup. We will instead take
worlds to be complete facts, with no requirement of consistency. That is, a world is a
set w of states of affairs such that for each atomic sentence p in the language, either
P € w or p € w (and possibly both). This allows us to capture the difference between
strict and tolerant satisfaction at a world, connecting truth-maker semantics to our
three-valued s¢-models above. For each atomic sentence p and world w, we define:

Vy(p) =1 iff pewandp ¢ w.
Vw(p) =0 iff p¢ wandp € w.

1
Vu(p) = 3 iff pewandp e w.

These values can then be used just as outlined above to define the tolerant and the
strict semantic interpretation of any sentence.

3.2.2 Pragmatic meaning

However, we did not introduce truth-makers just to recover notions we already had.
Our purpose in introducing truth-makers is to define a notion of pragmatic meaning
in terms of which we can strengthen the semantic meaning of a sentence.”> We have
suggested at the end of the previous section that although we allow for inconsistencies,
we can still pragmatically infer that —p is not true from the fact that ‘p’ is asserted,
by a reasoning analogue to the kind of reasoning involving scalar implicatures. In
linguistic pragmatics it is not uncommon to use minimal models (we will not bother
to distinguish models from worlds, using the terms interchangeably) to account for
scalar pragmatic implicatures (e.g. Schulz and van Rooij 2006). We will do the same
here to strengthen the semantic meaning, although we will think of a minimal world,
in a somewhat different way. For us, a minimal world that makes ¢ true is one that is
minimally inconsistent: it doesn’t contain more inconsistencies than required to make
¢ at least tolerantly true. It’s worth considering a few ways we might try to get to grips
with this intuitive notion. The first way to model this that comes to mind is the following
definition, with v < w iffyr {x € SOA : {x, X} Cv} C {x € SOA: {x,X} C w}:

e Prag(¢p) = {welo]l|—Fvelle]l:v<w}

notion of meaning: [(¢]] [z {g € F|3f € T(¢) : f < g}. Itis in terms of this notion of meaning
that van Fraassen (1969) provides a semantics for the notion of tautological entailment: ¢ F'¢ v iffyp
[(@D < [(¥]]. Notice that [(¢]] might be thought of as the set of (possibly non-total) situations at which
¢ is true. It is [[¢])] rather than 7' (¢) that Kratzer and others take to be the fine-grained semantic meaning
of a sentence in Situation Semantics (see Kratzer 2016). Although T (¢) < [(¢])], and all elements of [(¢])]
make ¢ true, only those in T (¢) make ¢ exactly true.

22 Fora closely related analysis of ‘scalar’ implicatures using facts, see van Rooij (2017).
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Indeed, this notion of minimally inconsistent interpretation is used in Priest (1991).
Unfortunately, as discussed in Cobreros et al. (2015b), this interpretation rule won’t do
for our purposes. Recall that according to Cobreros et al. (2012), to communicate that
John is a borderline case of a tall man one can say ‘John is tall and not tall’. According
to the above pragmatic interpretation, however, a sentence like ‘John is tall and not tall,
or Mary isrich’ is incorrectly interpreted as being pragmatically equivalent with ‘Mary
is rich’; the contradictory disjunct is too hastily ruled out (see Alxatib et al. 2013).

To avoid this prediction, we argued in Cobreros et al. (2015b) for the following
definition of pragmatic interpretation (where v <y w iffyy {x € SOA : x €
f&xeviC{xeSOA:xe f&X ew}):

PRAG($) =4f {weW|3IfeT@) :fCw&—-FwD f:v<;w) (2)

The function P RAG differs in two important ways from Prag: (1) PRAG(¢) looks
for minimal worlds for each exact truth-maker of ¢ rather than for the whole sentence
itself, and (2) for each of these exact truth-makers, it only seeks to minimize inconsis-
tencies with respects to the atomic facts occurring in it; it doesn’t bother about other
inconsistencies. It is due to the first feature that we achieve the correct prediction for
‘John is tall and not tall, or Mary is rich”; the exact truth-maker for this sentence that
makes its first disjunct true is inconsistent, and so no world containing it could occur in
the sentence’s Prag-value, since there is another exact truth-maker that is consistent.
But PRAG allows such inconsistent worlds to occur.

P RAG gets many other predictions correct as well: (1) ‘Johnis tall’ is pragmatically
interpreted to mean that John is strictly tall (thatis, w € PRAG(Tj) iff V\,(Tj) = 1),
(2) ‘John is not tall’ is predicted to mean that John is not even tolerantly tall (w €
PRAG(—Tj)) iff V,,(Tj) = 0), (3) ‘John is tall and John is not tall’ means that John
is borderline tall, i.e. tolerantly tall but not strictly tall (w € PRAG(Tj A —Tj) iff
Vu(Tj) = %), and (4) ‘John s tall or not tall’ means that John is not borderline tall (w €
PRAG(Tj v —Tj) ift V,(Tj) = 1 or 0). Those predictions are in accordance with
recent experimental results reported by Alxatib and Pelletier (2011), Ripley (2011),
Serchuk et al. (2011), Egré et al. (2013) and Egré and Zehr (2016). Furthermore,
‘John is tall and not tall, and Mary is rich’ is pragmatically interpreted to mean that
John is borderline tall and Mary strictly rich, which seems intuitively correct. Finally,
‘John is tall and not tall, or Mary is rich’ is correctly interpreted as saying that John is
borderline tall, or Mary is strictly rich.

3.2.3 A tolerance constraint

Let us go back now to the tolerance principle. Since similarity statements likea ~p b
are atomic, they correspond to atomic SOAs like a ~p b. At the moment, however,
our worlds pay no attention to the connection between these SOAs and the SOAs
they are meant to constrain, like Pa and Pb.23 We need to implement some kind of

23 There are lots of different reasons one might believe in such a constraint, and those might affect more
detailed models at exactly this point. For example, whether John is tall is presumably a matter (at least in
part) of his height; but so too is whether he is ‘tall’-similar to Mary. This might push for involving heights
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constraint so that tolerance can be respected. Here is our chosen constraint: we require
thatV,,(a ~p b) = 1—|Vy,(Pa)—V, (Pb)|. Thatis, a and b are to count as P-similar
to the extent that the value of Pa matches the value of Pb.2* We henceforth exclude
all worlds w that violate this condition.

One immediate effect of this is that the tolerance conditionals Pa Aa ~p b — Pb
come out at least tolerantly true at every world. For a world to assign such a conditional
the value 0, it would need to assign both Pa anda ~ p b the value 1 and Pb the value 0.
But this is not possible compatibly with the constraint; if a world assigns 1 toa ~p b,
then it must assign the same value to Pa and Pb. These tolerance conditionals, then,
can never receive the value 0 at any world.

3.3 Tolerance and inference relations
3.3.1 Pragmatic-to-tolerant entailment ( Prt)

Our pragmatic interpretation rule can be included in the definition of logical conse-
quence to try and overcome the limitations we pointed out above about the assertability
of the tolerance formula in s¢™~.2° In Cobreros et al. (2015b), we introduced the fol-
lowing notion of pragmatic consequence, EP"?, going from pragmatically strongest to
tolerant:

o DEM ¢ iffyy ﬂwer PRAG(Y) C o]

The resulting notion of consequence, however, distinguishes between separate
premises and their conjunction. There are cases in which ¢, ¥ EP'" x but ¢ A i EP'!
x . For example, p, —p EP" g: worlds in PRAG(p) must make p strictly true, and
worlds in P RAG (—p) must make it strictly false, so PRAG(p) N PRAG(—p) = 0.
However, p A—p EP"" q,as PRAG(p A—p) is not empty, and includes some worlds
outside of [[¢]l. The trouble is that P RAG here has its effect only on individual sen-
tences, when we might want it to apply to full collections of premises. To that end, we
introduce the following variant approach. We restrict attention to finite sets of premises,
and say that a finite set of premises I" entails ¢ provided the pragmatic meaning of the
conjunction of the premises entails the tolerant meaning of the conclusion. (For empty

Footnote 21 continued

in our SOAs. Or, it might be that whether John is ‘tall’-similar to Mary is a matter (at least in part) of the
range of contexts in which both John and Mary count as tall, and in which neither John nor Mary count as
tall. This might push for involving contexts in our SOAs. See Wright (1975), Kennedy and McNally (2005),
van Rooij (2011b) and Burnett (2014) for discussions of related ideas. Here, though, we take no stand on
these issues; we implement the connection between ~ p and P directly, rather than offering any theory of
why the connection holds.

24 This has some perhaps-counterintuitive results. For example, it makes everything that is P to value 1
P-similar; but we might think that someone 2 meters tall is not ‘tall’-similar to someone 3 meters tall, even
though both are certainly tall. But let this pass; the constraint is simple and easy to work with; if it needs to
be changed eventually, it is still a workable starting point.

25 This is similar to a standard approach in nonmonotonic logics. In McCarthy (1980)’s circumscription
theory, for instance, ¢~ ¥ iff all models making the circumscribed interpretation of ¢ true also make v
true. For a use of this kind of consequence relation to account for pragmatic reasoning, see Schulz and van
Rooij (2006).
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premise sets, we stipulate that PRAG(/\ #) = W, asserting nothing rules nothing
out.) We call the corresponding notion of validity Prz, and in what follows, we focus
on Prt rather than prt, although there is much that is similar about them:

e TEP" ¢ iff;y PRAG(AT) C 4]

We want to call quick attention to three features of Prt. First, Prt has all toler-
ance formulas as theorems, since for each such formula A, [A]] = W, as we saw in
Sect. 3.2.3. Second, ¢, —¢ pbr Y; since there can be worlds that tolerantly satisfy
¢ A—¢, and such worlds need not satify all 1 even tolerantly, explosion is not valid and
Prt entailment is paraconsistent. Third, conjunction elimination is valid: ¢ Ay P! ¢
and ¢ A EP' 4, since a world must at least tolerantly satisfy something in order
to pragmatically satisfy it, and tolerant satisfaction of a conjunction requires tolerant
satisfaction of each conjunct.

We turn now to Prt’s structural properties. The first thing to note is that Prt is
nonmonotonic, and in ways we might want for handling soritical situations. To start,
Prt validates n-fold tolerance: Pag, ay ~p ai, ..., dn—1 ~p an EX™ Pay,. To see
this, consider a world w € PRAG(Pag Nay ~p ay N --- ANay—1 ~p ay). There is
only one factin 7 (Pag Aag ~p aj A-+--Aay,—1 ~p ap),and it is consistent; thus, any

such w must give Vy,(Pag) = Vy(ag ~p a1) = --- = Vy(ap—1 ~p a,) = 1. But
since all the similarity facts take value 1, by our constraint on worlds, we must have
1 = Vy(Pag) = Vy(Pay) = --- = Vy(Pay). And thus, any such world tolerantly

satisfies Pa,—indeed, strictly satisfies it.

But although Prt validates n-fold tolerance, adding —Pa,, to the premises of this
argument results in an invalid argument. There is only one fact in T'(Pag A ay ~p
ay A ---ANa,—1 ~p a, N —Pa,), but this time it is not consistent; that is, our sim-
ilarity restrictions have ruled out any consistent world containing this fact. Indeed,
no world meeting our similarity restrictions can strictly satisfy Pag A ap ~p
ay A -+ ANay—1 ~p ap A —Pa,. It is still tolerantly satisfiable, however. Among
the worlds in PRAG(Pag Aag ~p ay A--- ANay—1 ~p a, A —Pa,) are worlds that
tolerantly satisfy every conjunct, and strictly satisfy all conjuncts but two similarity
facts a; ~p aj41 and a; ~p ajy1, withi < j.26 But at such worlds, we can have
Pay = 1for0 < k < i, plus Pay :%fori <k < j,plus Pay = 0for j <k <n.
In particular, then, such worlds do not even tolerantly satisfy Pa,; they show that
Pap,ap ~p di,...dn—1 ~p dn, —Pa, ¥ Pa,, although as we have seen the
same argument without its final premise remains Pr-valid.

Is Prt transitive? Answering this question requires fixing on a sense of transitivity.
As many usual senses of the term are not appropriate for nonmonotonic logics, this
requires a bit of care, since as we have seen Prt is nonmonotonic. We will focus on
a property like the one called Cut in, for example, Giordano et al. (2009, p. 18:6): If
I'FBandT, B+ C,thenT  C.2” Does Prt have this property?

26 This assumes that n > 1, to make room for distinct 7, j. Where n = 1, then, this exact example doesn’t
work. But one-step tolerance remains defeasible; it just takes a little more work to defeat it. In particular,
Pa,a ~p bEP™ Pbbut Pa,a ~p b, —~Pa,—a ~p b P Pb.

27 Note that, without some appeal to monotonicity (and contraction), this is not equivalent to Cut as it
occurs in Gentzen (1969).
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It does not. The core reason is that conclusions are held to a low standard—
tolerant satisfaction—while premises are pragmatically strengthened. And so we have
Pa,—Pa EF™ qa ~p b, plus Pa, —Pa,a ~p b X" Pb;but Pa, —Pa ¥ Pp.28
The latter two claims are perhaps straightforward to see, but the first might be
surprising. However, it does indeed hold. Any world w in PRAG(Pa A —Pa)
must be such that V,,(Pa) = % As a result, no matter what V,,(Pb) is, we have
[Vw(Pa) — Vy(Pb)| < 1,and so 1 — |V, (Pa) — V,(Pb)| > 0. By our constraint,
this requires V,,(a ~p b) > 0, and so w tolerantly satisfies a ~p b.

3.3.2 Pragmatic-to-pragmatic entailment (Pr Pr)

There are reasons you might be unhappy with £/, We argued in Sects. 1 and 2
that nontransitivity and nonmonotonicity might be ways to account for vagueness.
One might wonder, however, whether we need both of these properties. If either one
suffices on its own to capture the situation, and if both are somehow seen as draw-
backs, then we might hope for a purely nonmonotonic approach, just as st provides a
purely nontransitive one. Second, if pragmatic interpretation captures what is meant
by the speaker, one might wonder whether either conjunct can be inferred from the
premise Pa A —Pa. With this sentence the speaker wants to impart that a is border-
line tall. But if a conjunct like ‘Pa’ is asserted alone, it is pragmatically interpreted
to mean that a is strictly tall, and thus that a is not borderline tall. If we want a
consequence relation capturing what can be asserted on the basis of antecedent asser-
tions, the inference from Pa A —Pa to Pa should not be valid according to such a
relation.

Indeed, experimental investigations of borderline cases point to participant willing-
ness to agree with sentences of the form Pa A —Pa while disagreeing with Pa and
—Pa individually (see Alxatib and Pelletier 2011; Egré et al. 2013). However, one
important thing you might think a consequence relation ought to do is to constrain
patterns of agreement and disagreement in the following way: if I' - A, then one
ought not agree with everything in I' while disagreeing with A.%° But then, if the
participants in these experiments are not mistaken, indeed Pa A —Pa does not entail
Pa or —Pa, in any sense of entailment that bears this relation to their actions. What
might such an entailment relation look like? Not Prt, since Pa A —Pa entails both
Pa and —=Pa in Prt.

To account for the latter type of consequence relation we therefore define the
following inference relation (from pragmatic to pragmatic interpretation), again
restricting ourselves to finite sets of premises, and stipulating that PRAG(A\ @) =
W:

28 The question of Prt’s transitivity was settled by Shawn Standefer, who found this example. The cor-
responding question arose in footnote 22 of Cobreros et al. (2015a), but was mishandled; the reasoning
we give there does not support the claim we make there. The tolerance constraint we give in that paper
(in footnote 15) is different from the one we consider here, and we do not know whether the resulting
consequence relation in that paper is transitive or not.

29 For discussion of this point and related ideas, see MacFarlane (2004), Restall (2005), Ripley (2013) and
Field (2015).
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o TEPPr ¢ iff;y PRAG(/A\T) C PRAG(¢)

Thus, for inference we take into account what is (pragmatically) meant both by the
premises and by the conclusion. It follows that X" does not satisfy conjunction
elimination: in particular, pA—p EP"P" p Because p A—p will have no models where
p is strictly true, the pragmatic interpretation of the premise can only select models
where p is tolerantly true. Obviously, p cannot be strictly true here: p A —p EF7Pr p.
However, even though ¢ A ¥ EP7F7 ¢ in general, still p A g EF7P” p. The reason is
that p and ¢ are independent of each other, and so there are models where p A g will
receive value 1; these will be selected for the interpretation of the premise. In all such
models, p will indeed be strictly true.

As explained in Sect. 3.2.2, the pragmatic interpretation of a sentence of the
form (p A =p) Vg, PRAG((p A —p) V q), will contain not only worlds where
q has value 1, but also ones where p is tolerantly true and ¢ is false. For this rea-
son, (p A —p) Vv g EPTPr g Similarly, ¢ A —¢ EF7P" 4; that is, explosion is
not valid. Pr Pr-entailment is again a paraconsistent entailment relation, just like
Prt.

The tolerance inference, Pa, a ~p b EX"P" Pb, remains valid. Since the premises
can be jointly strictly satisfied by a world, every w € PRAG(Pa N a ~p b) does
indeed strictly satisfy them both, and so strictly satisfy Pb as well. Indeed, for essen-
tially the same reasons as in Prt, n-fold tolerance is Pr Pr-valid. (Note that the
reasoning given to show this for Prt establishes the strict satisfaction of the conclusion
of n-fold tolerance, assuming the pragmatic satisfaction of the premises.) However,
in contrast to Prt, the conditional form of tolerance, (Pa A a ~p b) — Pb, is not
a Pr Pr theorem. To be a theorem, it would have to follow from the empty set; that
is, PRAG((Pa A a ~p b) — Pb) would have to be W. But this is not s0.3° This
reflects the fact that, while tolerance conditionals are always at least tolerantly satis-
fied, asserting them need not be idle; their pragmatic strengthening still rules out some
worlds.

Like Prt, Pr Pr too is nonmonotonic. Some examples of this nonmonotonicity
were already presentin Prt: Pa,a ~p b EPrPr pp but Pa,a ~p b, = Pa, —a ~p
b ¥PrPr pp. Others are specific to PrPr: while p EF"Pr p_ still p, —p EP7P7
p-

Unlike Prt, however, Pr Pr is transitive in a sense appropriate for nonmonotonic
consequence relations: if I’ EPPPr B and T, B EPTPr C, then ' EP"Pr C. This
follows from the fact that if PRAG(AT) € PRAG(B), then PRAG(/\T) C

30 Considera world w that givesus Vy, (Pd) = %, and Vy)(a ~p d) = 1,foreachd € D. This world thinks
everything is P-similar to a, that nothing isn’t, and that everything both is and isn’t P. Such a world is not
in PRAG((PaAa ~p b) — Pb). For suppose it was. Then there is some f € T ((PaAa ~p b) — Pb)
with f € w, and such that thereisno v <y w. Since T ((PaAa ~p b) — Pb) = {{Pa}, {a ~p b}, {Pb}},
there are only three possible f's, and w cannot also contain {a ~p b}, so we can forget this one. This leaves
{Pa} and {Pb}. However, whichever of these we consider for f, thereis a v <y w: in the case of {Pa} it is
the world that assigns the value O to every Pd, and in the case of {Pb} it is the world that assigns the value
1 to each such. As aresult, w ¢ PRAG((Pa Aa ~p b) — Pb).
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PRAG(A\T A B)2!' Soif PRAG(/\T A B) € PRAG(C), then PRAG(A\T) C
PRAG(C) too.

4 Sorites arguments

With the machinery introduced in Sect. 3 we have come to define three different
consequence relations, which we restrict to finite sets of premises:

[ F7 ¢ justin case there is no model M such that,
V() = 1forall ¥ in T and Vaq(¢) = 0.
I' P ¢ just in case there is no model M such that,
M e PRAG(AT) and Vr(¢) = 0.
I EPTPr ¢ just in case there is no model M such that,
M e PRAG(/\T) forall y inT and M ¢ PRAG(¢).

In Sect. 3 we presented some ways to capture similarity relations, in order to be
able to express tolerance. In these logics tolerance is internalized since, in fact, the
inference from ‘Red(a)’ and ‘a ~gq b’ to ‘Red(b)’ is valid in each case. In this
section we review how these logics deal with sorites arguments.

4.1 The logics, side by side
4.1.1 st

The logic st is based on the idea that premises and conclusions of an argument need not
be subject to equal standards of satisfaction. If the premises of an argument are true to
some strict standard, it suffices for validity if the conclusion is true to some less strict
standard. Intuitively, this will lead to breaches of transitivity and this is precisely what
happens, according to this logic, in sorites arguments. Since pragmatic satisfaction is
not involved, st remains fully monotonic.

In our presentation of the sorites, we can formulate the argument as a step-by-step
argument over the similarity relation or as an argument making use of tolerance as
an explicit premise. According to st all steps in the sorites argument are valid. For
example, for any two colored objects a and b that differ imperceptibly in hue within
a more extended series, we have:

Red(a), a ~Rpeq b E*" Red(b),

31 Let Abe A T, and suppose PRAG(A) € PRAG(B)andw € PRAG(A),toshoww € PRAG(AAB).
Since w € PRAG(A), there is some f € T(A) with f € w and no v with v <fw and f C v. Similarly,
since w € PRAG(B), there is some g € T(B) with g € w and no u with u <g w and g C u. Since
T(AAB)=T(A)®T(B),wehave fUg e T(A A B).

If we can show, then, that there is no world x with x <fye wand f U g C x, then we have w €
PRAG(A A B) and we're done. So suppose there is such an x. Since x < g, w, there must be some state
of affairs s in f U g with s € w buts ¢ x. s must be in either f or g; wlog, suppose it is in f. But then
x <y w;and since f U g C x, we have also that f € x. Since w € PRAG(A), we know there is no such
X.
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But it doesn’t follow that the last element of the series is red, since when we put these
arguments together, validity breaks; n-fold tolerance is not s¢-valid. That is,

Red(a1), aj ~ped a2 " Red(az) --- Red(an—1), an—1 ~Red an F*’ Red(an)
BUT
Red(a1), ai ~Red @2, -- ., 8n—1 ~Red an ¥*" Red(an)

Concerning the tolerance principle,
VxVvy((Red(x) A X ~Red Y) — Red(y)),

appropriate constraints on similarity render the principle sz-valid.
However, st does validate

VxVy((Red(x) A X ~ped ¥) — Red(y)), Red(ay), a; ~Red @2, - ..,
an—1 ~Red an F*’ Red(an)

That is, although n-fold tolerance is not s¢-valid, and although tolerance is already
an st-theorem, adding tolerance as a premise to n-fold tolerance results in a valid
argument.

4.1.2 Prt
The logic Prt combines two features: pragmatic interpretation for the premises and
tolerance for the conclusion. This results in a logic that is both nonmonotonic and

nontransitive, as we’ve seen. Regarding step-by-step sorites arguments, Prt predicts
all steps in the sorites argument to be valid. So for any element a in the series,

Red(a), a ~geq b """ Red(b)
Unlike st, Prt validates n-fold tolerance:
P
Red(a1), @i ~Red @2, -...an—1 ~Red @n ="' Red(an)
But this cannot be arrived at by chaining the smaller inferences together; as we’ve
seen, Prt is not in general transitive, and does not allow such chaining.
Moreover, Prt’s nonmonotonicity means that similarity inferences can cease to
hold in the presence of countervailing information. For example, we may have:
Red(a), a ~peq b ¥’ Red(b)
BUT
Red(a), a ~gpeq b, —Red(a), —a ~peq b #X"* Red(b)

Concerning the tolerance principle,

VXVy((Red(x) A X ~Rred ) — Red(y))

@ Springer



Synthese

as in the case of st, is Pr¢-valid. Unlike in s¢, however, adding this tolerance sentence
as a premise to an n-fold tolerance argument makes no difference: the argument is
valid both with and without such a tolerance premise.

4.1.3 PrPr

The driving idea for Pr Pr is that the validity of an argument should be evaluated
in connection with those models that provide the highest standards of satisfaction
compatible with the statements contained in the premises and in the conclusions. Just
as with our other logics, according to Pr Pr all steps in the sorites argument are valid.
So for any element a in the series,

Red(a), a ~geq b EF"F" Red(b)

As we’ve seen, in contrast to either st or Prt, Pr Pr is transitive and, therefore, validity
won’t break down when we put these arguments together. That is, since foreach j < n
we have

PrP
Red(at), ..., Red(aj_1), @) ~Red @2, ..., -1 ~Red & F' """ Red(g)),
we can put these together by repeated appeals to transitivity to arrive at
Red(a), a1 ~Red @2, ..., 8n—1 ~Red @n F""" Red(an)

Again, nonmonotonicity allows us to render the inference invalid by adding coun-
tervailing information in the premises:

Red(a), @1 ~Red @2, - -, @n—1 ~Red an , ~Red(an) ¥*"*" Red(an)

Unlike in st and Prt, tolerance sentences are not theorems in Pr Pr. However, like
Prt (and unlike st), tolerance sentences make no difference for validity when they are
added as premises to n-fold tolerance: with or without additional tolerance premises,
n-fold tolerance is Pr Pr-valid.

4.2 Conclusion

In the course of this paper, we have outlined three distinct consequence relations: st,
Prt, and Pr Pr. Of these, the first is monotonic but nontransitive, the second is both
nonmonotonic and nontransitive, and the third is nonmonotonic but transitive. They
have much in common: all validate the tolerance inference, and each allows the soft
status of tolerance to be recognised by failing to obey the full budget of usual structural
rules.

Each relation reveals a different aspect of the underlying space of models, and of
the way those models operate in pragmatic strengthening. These models draw together
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tools from many-valued and nonmonotonic logics to generate appropriate predictions
about what is assertible, even in the kinds of tricky cases we’ve discussed.

Since we have defined three kinds of satisfaction (strict, tolerant, pragmatic), we
have the raw materials to define nine different two-sided consequence relations, of
which we have explored three in a bit of detail. None of these is itself any full story;
rather they all reveal different interactions between strict satisfaction, tolerant sat-
isfaction, and the pragmatic processes we have outlined. Overall, then, this paper’s
approach not only explains sow tolerance can be valid without the sorites wreaking
disaster, it also gives a detailed picture of the various ways in which tolerance is valid.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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