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Abstract. A binary relation R on a set S is transitive iff for all a, b, c ∈
S, if aRb and bRc, then aRc. This almost never applies to the relations
logicians tend to think of as consequence relations; where such relations
are relations on a set at all, they are rarely transitive. Yet it is common
to hear consequence relations described as ‘transitive’, and to see rules
imposed to ensure ‘transitivity’ of these relations. This paper attempts
to clarify the situation.

1 Introduction

After briefly substantiating the claims in the abstract, this paper focuses on
exploring a number of different properties of consequence relations that have
traveled under the name ‘transitivity’, mapping the implications among them.
From here forward, I will use ‘transitive’ and ‘transitivity’ very little, and only in
their standard relation-theoretic sense. To reiterate: to be transitive, a relation R
must be a binary relation on a set S, and it must be such that for any a, b, c ∈ S,
if aRb and bRc, then aRc.

Many familiar consequence relations are not relations on a set at all, but
instead relate sets of formulas (collections of premises) to single formulas (con-
clusions). That is, where F is the set of formulas under consideration, such a
relation is a relation between ℘(F) and F . Following [6], I’ll say these relations
work in the ‘Set-Form framework’. Such a relation is not the right kind of
thing to be transitive. Of course, these relations can, and frequently do, exhibit
a number of properties more and less closely connected to transitivity. But I will
not explore this here; I mention Set-Form relations to set them aside.

In what follows, I work entirely in the Set-Set framework. In this framework,
consequence relations really are binary relations on a single set: the set ℘(F).
That is, they relate sets of formulas to sets of formulas. So they are at least the
right kind of relation to be transitive.

Much research into Set-Set consequence relations (see eg [4, 13, 7, 11, 14, 6])
interprets the members of the set of conclusions as (in some sense) different pos-
sibilities. On this interpretation, arguments with fewer conclusions are stronger
than those with more, since they narrow down more finely on a result. This is
the interpretation I’ll focus on in what follows.

These relations, too, are almost never transitive. Consider, for example, the
Set-Set consequence relation ⊢ determined by classical logic, explored and de-
fended in [7], among other places. This relation relates {A ∨B} to {A,B}, and
relates {A,B} to {A ∧ B}, but does not relate {A ∨ B} to {A ∧ B}; it is thus
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not transitive. The reason is nothing particularly to do with classical logic; it
is instead to do with how sets of formulas are interpreted. As premises, they
are meant conjunctively: as all available to be drawn on together in establishing
conclusions. As conclusions, they are meant disjunctively: as jointly exhausting
the space where the truth must lie, given the premises. This difference in inter-
pretation prevents linking valid Set-Set arguments together in the simple way
guaranteed by transitivity.

2 A Catalog of Linking Properties

In this section, I lay out the assumptions that will frame the paper, and then
present a catalog of ten properties that a Set-Set consequence relation might
exhibit, all of which, I think, are recognizable as related to what logicians often
mean by ‘transitivity’. These ten properties form the basis of the paper, which
fully maps the implications among arbitrary conjunctions of these properties.

Some notational preliminaries: I use capital Roman letters for formulas, and
capital Greek letters (that are not also capital Romans) for sets of formulas.
F is the set of formulas in the language under consideration; each Set-Set
consequence relation, then, is a binary relation on ℘(F). (As above, I restrict
attention entirely to Set-Set relations.) I abbreviate freely in usual sequent-
calculus ways, so, for example, ‘Γ, A,Σ ⊢’ abbreviates ‘Γ ∪{A}∪Σ ⊢ ∅’. When I
talk of ‘partitions’ of a set, this should be understood to include partitions with
an empty entry; for example, ⟨∅,Σ⟩ is a partition of Σ, on this usage.

2.1 Assumptions

I assume in places that the language F contains infinitely many formulas; its
cardinality does not otherwise matter. I make no assumptions about the nature
or structure of formulas; F can be any infinite set.

Consequence relations are often defined as relations that are ‘reflexive, mono-
tonic, and transitive’. The final condition, of course, is the subject of this paper,
so I am certainly not assuming it. Nor will I assume reflexivity, although this
turns out not to matter; all the results of the paper remain unchanged with such
an assumption in place.1

1 ‘Reflexive’ here is like ‘transitive’; it does not have, in its usual application to Set-
Set consequence relations, its usual relation-theoretic sense. In the usual sense, a
relation R on a set S is reflexive iff for all x ∈ S, xRx. For consequence relations,
this would require that for every set Γ of formulas, Γ ⊢ Γ . As it happens, this is
almost never the case; at the very least, the empty set does not entail itself in any
familiar setting. There are two usual things one might mean by ‘reflexivity’ here:
that Γ ⊢ Γ for all singleton Γ , or all nonempty Γ ; these are the assumptions that
would not change anything in what follows. To show this, I take care to make sure
that all the examples I discuss are reflexive (in both of these senses), and that no
proof of any claim depends on reflexivity (in any sense).
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I will, however, assume throughout the paper that all consequence relations
are monotonic: that whenever Γ ⊢ ∆, then Γ,Γ ′ ⊢ ∆,∆′.2 This matters a great
deal; the situation is very different if this assumption is not imposed, and many
of the results to follow would not hold without it.

A consequence relation ⊢ is compact iff whenever Γ ⊢ ∆, then there are finite
Γfin ⊆ Γ and ∆fin ⊆ ∆ such that Γfin ⊢ ∆fin. In what follows, I will not require
compactness in general, but I will keep track of compactness, and show what
the effects of requiring compactness are.

2.2 The Catalog
Table 1 gives ten properties that a consequence relation ⊢ may or may not
exhibit. Each of the properties is a closure property: they are all of the form
‘if these things stand in the relation, then those things must also stand in the
relation’. These should be understood as universally quantified; for example, ⊢
has the property ks iff whenever Γ ⊢ A and A ⊢ ∆, then Γ ⊢ ∆, for all choices of
Γ,∆, and A. The properties to be considered in this paper are the ten in Table
1, and arbitrary conjunctions of these.

Table 1. Linking properties

Name: If and then
s C ⊢ A A ⊢ D C ⊢ D
ks Γ ⊢ A A ⊢ ∆ Γ ⊢ ∆
/f Γ ⊢ A A,Γ ⊢ ∆ Γ ⊢ ∆
f/ Γ ⊢ ∆, A A ⊢ ∆ Γ ⊢ ∆
fg Γ ⊢ ∆, A A,Γ ⊢ ∆ Γ ⊢ ∆
/c Γ ⊢ A for all A ∈ Σ Σ,Γ ⊢ ∆ Γ ⊢ ∆
c/ Γ ⊢ ∆,Σ A ⊢ ∆ for all A ∈ Σ Γ ⊢ ∆
/c+ Γ ⊢ ∆, A for all A ∈ Σ Σ,Γ ⊢ ∆ Γ ⊢ ∆
c+/ Γ ⊢ ∆,Σ A,Γ ⊢ ∆ for all A ∈ Σ Γ ⊢ ∆
cg Σ+,Γ ⊢ ∆,Σ− for all partitions ⟨Σ+,Σ−⟩ of Σ Γ ⊢ ∆

Each allows valid arguments to be linked in a specific way; in the antecedent
of these properties, the formula A and/or the set Σ of formulas figures among
the conclusions of the left conjunct and the premises of the right conjunct, but
does not appear in the consequent at all. (cg is the only exception to this, as its
antecedent does not have left and right conjuncts.) Two of these properties—s
and ks—are special cases of transitivity. The others, however, are not.

The abbreviations for the properties are intended to be (at least somewhat)
mnemonic without taking up too much space. The properties that have received
the most attention are s for ‘simple’, fg for ‘finite generalized’, and cg for ‘com-
plete generalized’.3 The remaining properties are lopsided; each focusses in on
2 Unlike ‘reflexive’ and ‘transitive’, ‘monotonic’ here does have its usual relation-
theoretic sense, w/r/t the order ⊆ on sets of formulas.

3 I take the terms ‘simple’ and ‘generalized’ from [16]. Weir’s ‘simple transitivity’ is
my s; his ‘generalized transitivity’ is my fg. (He does not consider cg.)
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either the premise or conclusion side of the relation in question. The abbre-
viations for these properties include a ‘/’; where the property focusses on the
premise side, a letter appears before ‘/’, and where it focusses on the conclusion
side, a letter appears after ‘/’. The ‘f’ and ‘c’ are for ‘finite’ and ‘complete’.

Each property on the list has a dual also on the list. Properties P and P ′ are
duals, in the sense relevant here, iff: for a consequence relation ⊢ to have P is
for its converse ⊣ to have P ′. The properties s, ks, fg, and cg are all self-dual.
For the remaining properties, the names indicate duality; for example, /f and
f/ are duals. Also, the assumptions in play about consequence relations (that
they are monotonic Set-Set relations) are self-dual; a relation ⊢ meets them iff
its converse ⊣ does. So too is compactness self-dual, in this sense. Noting these
symmetries will allow for some of the following proofs to get away with only half
the work they would otherwise take. For example, once we see that fg implies
/f, we can immediately conclude that it implies f/ as well; and once we see that
/c+ does not imply c+/, we can immediately conclude that c+/ does not imply
c+/ either. I will use this style of reasoning frequently in what follows.

3 Previous Work

3.1 fg and Cut

In the present setting, fg is equivalent to the following property: if Γ ⊢ ∆, A
and A,Γ ′ ⊢ ∆, then Γ,Γ ′ ⊢ ∆,∆′. This property, in turn, is closely connected to
[4]’s rule of cut in the sequent calculus LK. (Just like ‘transitivity’, ‘cut’ means
many different things in different contexts. Most of them, however, are related
to Gentzen’s use of ‘cut’.)

Cut looms large in many proof-theoretic investigations; fg, then, has real
proof-theoretic import. But it also, at times, has philsophical import. For exam-
ple, [7, 8] understand fg (as a condition on a particular consequence relation) as
encoding the following constraint on certain conversational norms: if a certain
combination of assertions and denials is within the norms, then for any formula
A, either adding an assertion of A to that combination remains within the norms,
or else adding a denial of A to that combination remains within the norms. [7, 8]
endorse this constraint; [9, 10] dispute it.

3.2 cg and Bivaluations

One way to present a consequence relation on a language F is via bivaluations:
binary partitions ⟨T, F ⟩ of F . By specifying a set M of such partitions, one
specifies a consequence relation ⊢M in the following way: Γ ⊢M ∆ iff there is
no ⟨T, F ⟩ ∈ M such that Γ ⊆ T and ∆ ⊆ F . (Informally, you might think: the
argument is valid iff there is no model on which all the premises are true and
all the conclusions false.) This way of thinking is stressed in [13, 6], but even
where it is not stressed it is often applicable. For example, any way of presenting
a consequence relation using models with designated values in the usual way fits



332 D. Ripley

this mould directly: we can understand each model as partitioning the language
into those formulas that receive a designated value and those that do not.

Any consequence relation arrived at in this way will have certain structural
properties: it will be reflexive (in the senses of footnote 1), monotonic, and it will
have the property cg. (For proof, see [13, p. 30].) As we will shortly see, cg in
fact implies all the other properties in Table 1. This means that bivaluations will
not prove useful in what follows; they obscure the relations between the linking
properties under consideration, by forcing them all to hold.4

Many monotonic Set-Set consequence relations encountered in the wild can
be presented in terms of bivaluations, and so exhibit cg and thus all the linking
properties to be considered here. (Note, however, that [11, p. 83] complains that
cg is overstrong, claiming that it requires “much more than the transitivity of
consequence”.) It is only in cases where cg fails that the distinctions explored
here are revealed.

3.3 Quantum Logic

[3, p. 44] and [1] both consider forms of quantum logic, and attribute to it the
conjunction of /f and f/, which I will call f/f. In quantum logic, distribution of
conjunction over disjunction fails; as it happens, there are important connections
between distribution and fg, which I do not have space to explore here (but see
[6, p. 10], particularly Exercise 0.13.7(i)). In these authors’ settings, quantum
logic does not obey fg, which they take to be a default expression of transitivity;
f/f is substituted to “reflect the transitivity of implication” [1, p. 247].

In both cases, the authors restrict their attention to compact relations, for
which the conjunction of /c and c/, which I will call c/c, is equivalent to f/f.5
(More on compactness presently.) Neither source discusses /f or f/ on their
own.

3.4 Neo-Classical Logic

The ‘neo-classical’ logic explored in [15, 16], among other places, is another
consequence relation that exhibits some of these properties but not others. As
[16, p. 100] points out, this consequence relation obeys s. In fact it also obeys
ks; as we will see, this is stronger. However, it does not exhibit any of the other
properties in Table 1. Weir claims that s “should be incorporated in any genuine
notion of logical consequence”, but does not elaborate.

3.5 Cut3

There is one other property not listed in Table 1 I’m aware of that has been
considered a form of ‘transitivity’ for Set-Set consequence relations. This is
4 Related techniques from [5], however, can avoid imposing cg.
5 In fact, Dummett (but not Cutland & Gibbins) only considers finite sequents. Note
as well that the discussion in [3] in support of f/f, if cogent, in fact supports the
full strength of c/c, even for noncompact relations.
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the property called ‘Cut3’ in [13, p. 32]. A consequence relation ⊢ has Cut3
iff whenever Γ ⊢ ∆, A for all A ∈ Σ1, and B,Γ ⊢ ∆ for all B ∈ Σ2, and
Σ1,Γ ⊢ ∆,Σ2, then Γ ⊢ ∆. But as Shoesmith and Smiley immediately show,
Cut3 is equivalent to the conjunction of /c+ and c+/; I will later call this
conjunction c+/c+. (Their proof depends on monotonicity.)6

[12, p. 37], oddly, calls this property (there defined directly as the conjunction
of /c+ and c+/) ‘Cut’, and takes it to be of some import. In particular, Segerberg
points to fg, claims that it is not sufficient when infinite sets of premises and
conclusions are considered, and then offers this property as the appropriate re-
placement. (He also points out that s, which he calls ‘transitivity’, is a ‘very
special case’ of this property (p. 38).) I know of no other sources that have
attended to this property.

4 Implications

There are ten properties listed in Table 1, and this paper will consider arbitrary
conjunctions of these. Our exploration begins, then, with 210 = 1024 property-
specifications to consider. Fortunately, there are many fewer distinct properties
actually in play. In this section, I explore implications among these properties,
and show that from our 1024, there are at most 21 distinct properties, and
at most 7 if compactness is assumed. (I identify properties iff they imply each
other.) In fact, these counts are exact, but the ‘at least’ part of the claim will
not be proved until §5. First, I will lay out these implications in three categories:
implications by special case, implications by monotonicity, and implications by
semilattice properties. Then, I will consider the effects of compactness, and show
additional implications among our properties that hold when compactness is
assumed.

4.1 Three Kinds of Implications

Some implications from one property to another happen in the easiest possible
way: when one property covers only certain special cases of another. These im-
plications can be verified directly by inspection. In this way, five implications
are secured: ks implies s; /c implies /f; c/ implies f/; and each of /c+ and
c+/ implies fg.

Other implications are not so direct; these require some appeal to monotonic-
ity. The needed appeals to monotonicity, however, are quite formulaic: when
one property’s antecedent follows by monotonicity from another property’s an-
tecedent, then the first property implies the second. This gives eight more impli-
cations: each of /f and f/ implies ks; fg implies both /f and f/; /c+ implies
/c; c+/ implies c/; and cg implies both /c+ and c+/.

6 [13, p. 30ff.] considers fg, /c+, c+/, Cut3, and cg; the implications and nonimpli-
cations among these properties shown there are among what is shown in the present
paper.
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Finally, implication among properties forms a semilattice with conjunction as
the meet.7 That is, implication is transitive, and the conjunction of two proper-
ties is their greatest lower bound w/r/t the implication order. Together with the
implications recorded above, this secures a large range of additional implications
among the properties under consideration. For example, since fg implies both
/f and f/, it follows that it implies their conjunction. Since /c+ implies /c, and
/c implies /f, then /c+ implies /f. And so on.

4.2 Twenty-One Properties

These implications narrow the space of properties under consideration to twenty-
one: the ten properties that appear in Table 1, plus the eleven additional prop-
erties given in Table 2, generated from the original ten by conjunction.

Table 2. Additional linking properties formed by conjunction

Name: Definition: Name: Definition:
f/f f/ and /f. c/c c/ and /c.
f/c f/ and /c. c/f c/ and /f.
/fg/c /c and fg. c/fg/ c/ and fg.
c/fg/c c/, /c, and fg. c+/c+ c+/ and /c+.
c/c+ c/ and /c+. c+/c c+/ and /c.
⊤ The empty conjunction, exhibited by every consequence relation.

Given the implications already recorded, each of the 210 = 1024 property-
specifications we can generate from Table 1 by conjunction specifies one of these
twenty-one properties. For example, for a consequence relation to exhibit the
properties fg, f/, and /c is just for it to exhibit /fg/c, since fg already implies
f/. Similarly, for a consequence relation to exhibit ks, /c+, and f/ is just for
it to exhibit /c+, which implies the other two properties. And so on, for every
combination.

4.3 Compactness

For compact relations, there are more implications to take account of among the
properties in play; this section records these and takes account of their impact.

Proposition 1. If ⊢ is compact and has fg, then it has cg.

Proof. See [13, p. 37] for proof. (Their ‘cut for formulae’ is exactly fg, and their
‘cut for sets’ is exactly cg.)

Proposition 2. If ⊢ is compact and has /f, then it has /c.

7 For semilattices (and lattices), see [2].
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Proof. Suppose ⊢ is compact and has /f, that Γ ⊢ A for all A ∈ Σ, and that
Σ,Γ ⊢ ∆. Since ⊢ is compact, this givesΣfin,Γfin ⊢ ∆fin for some finite Σfin ⊆ Σ,
Γfin ⊆ Γ , and ∆fin ⊆ ∆. By monotonicity, Σfin,Γ ⊢ ∆. Since Σfin ⊆ Σ, we have
Γ ⊢ A for all A ∈ Σfin. Now, where n is the cardinality of Σfin, let Σfin =
{σ0, . . . ,σn−1}, and for m ≤ n, let Σm

fin = {σm, . . . ,σn−1}. Thus, Σ0
fin = Σfin,

and Σn
fin = ∅.

I claim that for any i from 0 to n (inclusive), Σi
fin,Γ ⊢ ∆; when i = n, this

is Γ ⊢ ∆, and the proposition follows. This can be shown by induction. The
case where i = 0 is already shown. So suppose the claim is true for i < n; then
Σi,Γ ⊢ ∆, which is to say σi,Σi+1,Γ ⊢ ∆. By assumption, Γ ⊢ σi; monotonicity
gives Σi+1,Γ ⊢ σi. Now, applying /f, Σi+1,Γ ⊢ ∆.

Proposition 3. If ⊢ is compact and has f/, then it has c/.

Proof. From Proposition 2, by duality.

For compact relations, then, /f and /c are equivalent to each other, as are
f/ and c/. This also means that f/f, f/c, c/f, and c/c are all equivalent
to each other for such relations. In addition, Since fg implies every property
under consideration for compact relations, all of fg, /c+, c+/, cg, /fg/c,
c/fg/, c/fg/c, c+/c, c/c+, and c+/c+ are equivalent to each other for these
relations. This leaves (at most) seven distinct properties: ⊤, s, ks, /f (= /c),
f/ (= c/), f/f (= c/c), and fg (= cg).

The situation so far is recorded in Figure 1. In this figure, each arrow is an
implication already recorded; the double-thickness arrows are implications that
we have seen become equivalences in the presence of compactness. (For now,
you can ignore the letters that label the arrows.) When compactness is assumed,
only fg and the six other nodes implied by it remain distinct; each of the other
fourteen nodes is connected to one of these seven by a path containing only
double-thickness arrows.

5 Nonimplications

So far, only implications have been recorded. So while we know there are at most
twenty-one distinct properties in play here, and at most seven if compactness is
assumed, it’s still possible, for all I’ve said so far, that there are fewer. In fact,
there are not; the implications so far recorded exhaust the implications among
these properties. This section shows that the remaining potential implications
do not hold. In each case, I will show this by counterexample.

5.1 Presenting Consequence Relations

I will present consequence relations using a very simple kind of ‘proof system’. I
work with sequents; a sequent for a language F is a pair ⟨Γ,∆⟩ of subsets of F ;
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Fig. 1. Implications

I will write such a pair [Γ ∴ ∆]. It is handy to consider the subsequent relation
⊑, defined: [Γ ′ ∴ ∆′] ⊑ [Γ ∴ ∆] iff Γ ′ ⊆ Γ and ∆′ ⊆ ∆.

A sequent-based proof system involves two components: some set of initial
sequents, which are simply given as valid, and some rules that allow new validities
to be generated from old. The proof systems I will draw on here are all quite
simple. For each of them, I will specify a set P of sequents; the initial sequents
of the system are then all those sequents in P, together with all sequents of the
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form [A ∴ A], for any A ∈ F . There is only a single rule in any of these systems:
the rule of infinitary weakening, which allows us to derive [Γ,Γ ′ ∴ ∆,∆′] from
[Γ ∴ ∆], for any Γ,Γ ′,∆,∆′ ⊆ F .

So for any set P of sequents, we have a consequence relation ⊢P determined
as follows: Γ ⊢P ∆ iff either 1) Γ ∩∆ ̸= ∅, or 2) there is some [Γ ′ ∴ ∆′] ∈ P
such that [Γ ′ ∴ ∆′] ⊑ [Γ ∴ ∆]. A binary relation on ℘(F) is ⊢P for some P iff
it is monotonic and reflexive (in the senses of footnote 1, which are equivalent
given monotonicity), so this approach works at the right level of generality for
present purposes. It also gives a tractable way to explore compactness: note that
⊢P is compact iff every infinite sequent in P has a finite subsequent in P.

5.2 A Menagerie of Consequence Relations

Table 3 presents seven distinct consequence relations, a–g. For each, it notes
two of the twenty-one properties: one that the consequence relation has and one
that it lacks. These two properties are chosen so that the implications already
recorded suffice to settle the situation as regards the remaining nineteen: each
other property is either implied by the property the relation has, or else implies
the property the relation lacks. (I find this easiest to see by referring to Figure
1.) Let B,C,D,E, F be five distinct formulas, and let Θ ⊆ F be infinite. For
each of these, Table 4 gives a counterexample to the property that it is listed in
Table 3 as lacking; these are easy to check.8

Table 3. Seven consequence relations

Name: P Has: Lacks:
a {[B ∴ C], [C ∴ D]} ⊤ s
b {[Γ ∴ ∆] : max(|Γ |, |∆|) > 2 and B ∈ Γ ∪∆} s ks
c {[E ∴ B,C,D], [B ∴ C,D]} /c f/
d {[C ∴ D,B], [B,C ∴ D]} c/c fg
e {[Γ ∴ ∆] : ∆ is infinite or Γ ∩Θ ̸= ∅} /c+ c/
f {[Γ ∴ ∆] : ∆ is infinite or |Γ | ≥ 2} c/c+ c+/
g {[Γ ∴ ∆] : Γ ∪∆ is infinite} c+/c+ cg

For space reasons, I do not prove here that every relation in Table 3 has the
property it is there claimed to have; none of the needed proofs is particularly
devious. Here are two examples to give the flavour.

Proposition 4. Relation d has c/c.

Proof. Suppose it lacks /c; then there are Γ,∆,Σ such that Γ ̸⊢d ∆ while
Γ ⊢d A for every A ∈ Σ and Σ,Γ ⊢d ∆. If Σ ⊆ Γ , then Γ ⊢d ∆, contrary
8 [13, p. 31] gives the relation here called g, for the same purpose: to show that c+/c+

and cg are distinct. See their Theorem 2.7 (p. 32).
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Table 4. Counterexamples

Name: Lacks: Validates: And: But:
a s B ⊢ C C ⊢ D B ̸⊢ D
b ks C,D ⊢ B B ⊢ E,F C,D ̸⊢ E,F
c f/ E ⊢ B,C,D B ⊢ C,D E ̸⊢ C,D
d fg C ⊢ D,B B,C ⊢ D C ̸⊢ D
e c/ ⊢ Θ A ⊢ for all A ∈ Θ ̸⊢
f c+/ B ⊢ F \ {B} B,A ⊢ for all A ∈ F \ {B} B ̸⊢
g cg F+ ⊢ F− for every partition ⟨F+,F−⟩ of F ̸⊢

to supposition. So there must be some A ∈ Σ with A ̸∈ Γ . Since Γ ⊢d A and
A ̸∈ Γ , it must be that B,C ∈ Γ and A = D. Since Γ ̸⊢d ∆ while B,C ∈ Γ , it
must be that D ̸∈ ∆. Now, suppose E ∈ Σ ∩∆; since Γ ⊢d E and E is not D,
we must have E ∈ Γ . Then Γ ⊢d ∆, contrary to supposition. So Σ∩∆ is empty.
But then (Σ ∪ Γ ) ∩ ∆ is empty, and since D ̸∈ ∆, it follows that Σ,Γ ̸⊢d ∆.
Contradiction.

For c/, the argument is dual, reversing the roles of C and D.

Proposition 5. Relation f has c/c+.

Proof. First, that it has c/. If A ⊢f ∆ for each A ∈ Σ, then either ∆ is infinite,
in which case Γ ⊢f ∆ directly, or else Σ ⊆ ∆; the only valid arguments with
finitely many conclusions and a single premise are those where the premise is
among the conclusions. But if Σ ⊆ ∆, then if Γ ⊢f ∆,Σ, this is already Γ ⊢f ∆.

Second, that it has /c+. Suppose Σ,Γ ⊢f ∆ and Γ ⊢f ∆, A for each A ∈ Σ,
to show Γ ⊢f ∆. If ∆ is infinite, we’re done; if |Γ | ≥ 2 we’re done; if Γ ∩∆ ̸= ∅
we’re done. So suppose ∆ is finite, |Γ | < 2, and Γ ∩ ∆ = ∅. Since Σ,Γ ⊢f ∆,
either Σ ∩∆ ̸= ∅ or |Σ ∪ Γ | ≥ 2. In the first case, take some A ∈ Σ ∩∆; since
Γ ⊢f ∆, A and ∆∪{A} = ∆, we’re done. In the second case, there must be some
A ∈ Σ but A ̸∈ Γ ; we then have Γ ⊢f ∆, A. But |Γ | < 2 and Γ ∩ (∆∪ {A}) = ∅,
so this is impossible.

5.3 No Further Implications

To see that there are no further implications, return to Figure 1, now attending
to the letters that label the arrows. These letters correspond to consequence
relations from §5.2; letters with ′ pick out converse relations. The indicated
consequence relation, in each case, is a counterexample to the claim that the
implication in question is an equivalence. Moreover, where the implication is a
single-line arrow—that is, where it is not already known to become an equiva-
lence in the presence of compactness—the indicated counterexample is compact;
this shows that no additional implications collapse to equivalences in the pres-
ence of compactness.9

9 a–d are compact. For a, c, and d, P contains only finite sequents. For b, P contains
a finite subsequent of each infinite sequent it contains. (e–g are not compact, and
could not be, given the combinations of properties they exhibit.)
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Because the properties under consideration are closed under conjunction, this
suffices to rule out any additional implications. Any additional implication would
bring with it an additional equivalence (if P implies Q, then P is equivalent to
the conjunction of P and Q; this conjunction is already known to imply P); so
the fact that there are no additional equivalences suffices to show that there are
no additional implications.

As a result, the implications between these properties are now completely
characterized. By taking arbitrary conjunctions of the ten properties in Table 1,
there are exactly twenty-one distinct properties we can reach, twenty of which
(all but ⊤) are linking properties, properties of the sort that can plausibly travel
under the name ‘transitivity’. For compact relations, these twenty-one collapse
to seven, six of which (again, all but ⊤) are such linking properties.

6 Conclusion

‘Transitivity’, as applied to consequence relations, can conceal more than it
reveals. When someone says a consequence relation is ‘transitive’, then, it is
worth asking just what is meant. It is almost never the case that they mean that
it is transitive, in the usual relation-theoretic sense. But then what can they
mean?

This paper has explored some possible answers. It’s a safe bet that nobody
means ⊤ by ‘transitivity’, but the remaining twenty properties (in the general
case) or six properties (in the presence of compactness) are all possible ways to
fill in the idea. When we call consequence relations ‘transitive’, then, it behooves
us to make clear exactly what we are saying; there is no single thing we must
obviously mean.
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