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Abstract In some logics, anything whatsoever follows from a contradiction; call
these logics explosive. Paraconsistent logics are logics that are not explosive. Para-
consistent logics have a long and fruitful history, and no doubt a long and fruitful
future. To give some sense of the situation, I’ll spend Section 1 exploring exactly
what it takes for a logic to be paraconsistent. It will emerge that there is consider-
able open texture to the idea. In Section 2, I’ll give some examples of techniques
for developing paraconsistent logics. In Section 3, I’ll discuss what seem to me to
be some promising applications of certain paraconsistent logics. In fact, however, I
don’t think there’s all that much to the concept ‘paraconsistent’ itself; the collection
of paraconsistent logics is far too heterogenous to be very productively dealt with
under a single label. Perhaps that will emerge as we go.
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1 What is Paraconsistency?

There are at least two notions of paraconsistency already in the literature. They are
sometimes referred to as ‘strong paraconsistency’ and ‘weak paraconsistency’ (eg
in [4, p. 126], [20, p. 96], [14, p. 158]), but this terminology has the drawback
that there is nothing particularly stronger or weaker about one than the other. They
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are simply independent properties of a consequence relation.1 I’ll refer to them,
then, with the more descriptive names ‘conjunctive paraconsistency’ and ‘collective
paraconsistency’. Here is a first pass at these notions:

Definition 1 (Conjunctive paraconsistency) A consequence relation � on a language
L is conjunctively paraconsistent iff there are wffs A, B ∈ L such that A∧¬A �� B.

Definition 2 (Collective paraconsistency) A consequence relation � on a language
L is collectively paraconsistent iff there are wffs A, B ∈ L such that A, ¬A �� B.

In a logic for which A ∧ B � C implies A, B � C, collection-paraconsistency
implies conjunction-paraconsistency; in a logic for which the reverse is true, the
reverse is true. (The terminology of ‘strong’ and ‘weak’ paraconsistency thus
assumes one direction of this implication but not the other.)

These definitions can only be a first pass, however, as both depend on some prior
understanding of ¬ (meant to be a negation), or at least of which wff ¬A is for a
given A. In addition, conjunctive paraconsistency depends as well on a similar prior
understanding of ∧ (meant to be a conjunction), and collective paraconsistency on a
prior understanding of the structural comma occurring between premises, of what it
is to take premises together.

In some restricted logical settings, all this can be taken for granted: there is
exactly one plausible candidate to fill each role. In many other settings, though,
it cannot. For example, the logic CR� of [23] has two negations. One behaves
(conjunction-)paraconsistently; the other does not. On the other hand, affine logic
(linear logic plus weakening; see eg [36] for details) has one negation, but two con-
junctions. Again, one behaves paraconsistently, while the other does not.2 Still other
systems, like the display systems of [8], feature multiple ways for premises to be
combined, such that whether a logic counts as collection-paraconsistent can depend
on what kind of collection is in play. Some conjunctions and ways of combining
premises are order-sensitive, so it can matter whether we consider A together with
¬A or ¬A together with A. And there are systems, like some of those of [17], that
exhibit all of these features. For such systems, the question ‘Is it paraconsistent?’ is
hopelessly imprecise.

The only answerable questions, then, will be more specific, selecting at least a
particular negation together with either a particular conjunction or a particular way
of combining premises.3 Worse, this selection must happen after the logical system

1I have nothing much to say about which things are and which things are not consequence relations. I
certainly have no precise definition in mind; usual precise definitions exclude some things I include. (For
example, understanding a consequence relation as a Tarskian closure operation excludes a wide variety
of substructural logics.) If it so much as smells consequencey it’s a consequence relation as far as I’m
concerned.
2For the additive conjunction ∧, we have A ∧ ¬A,A ∧ ¬A � B, but A ∧ ¬A �� B; two copies of a
contradiction do entail everything, but a single copy does not.
3You might note that I haven’t said anything about what it takes to count as a negation or a conjunction or
a way of combining premises in the first place. No way am I going near that can of worms.
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in question is specified, so we can see just which connectives occur to be asked after;
there’s no sense asking about the paraconsistency with regard to ¬ and & of a logic
with no &. As a result, precise notions of paraconsistency don’t travel well; it can
be very difficult to ask whether two distinct logics share a particular property of
paraconsistency, or whether they exhibit different kinds, since we’d need some way
to identify connectives across logics.

But for the sake of being able to talk more easily about paraconsistency, let’s
pretend these difficulties don’t arise. For the remainder of the paper, I’ll focus on
logics in which there is a single best candidate for each of the roles of negation, con-
junction, and premise-collector; as a result, we will have only the two properties of
conjunction-paraconsistency and collection-paraconsistency to worry about. Indeed,
in many of these logics it will be the case that A, B � C iff A∧B � C, and for these
I’ll talk simply of ‘paraconsistency’.

Even with these assumptions in place, it can be tempting to refine the notion
further. For example, minimal logic, while technically paraconsistent, is such that
A ∧ ¬A � ¬B for every A, B. But it seems that whatever reasons someone might
have for paraconsistency are likely to also be reasons to avoid this kind of situation.
As a result, there might be reason to develop a new notion that would both entail
paraconsistency and rule out minimal logic, along with such other critters as might
exhibit relevantly similar behaviour. ([45] makes a reasonably compelling attempt at
the task.) I won’t pursue this here; I’ll just note that minimal logic and the like obey
the letter of paraconsistency without quite getting the spirit right.

2 How to be Paraconsistent

In this section, I discuss some ways in which paraconsistent systems can be con-
structed. I’ll focus on model-theoretic presentations here, since paraconsistency is a
nonentailment claim. Models at their most general are wildly varied critters. In pre-
senting a particular logic model-theoretically, if even a single counterexample to a
single instance of explosion gets in, the logic is paraconsistent. But there are many
ways for something to count as a counterexample to an instance of explosion. As a
result, it is easy to specify paraconsistent logics model-theoretically; indeed, one has
to go to special trouble to specify an explosive logic, ruling out every possible kind
of counterexample. So there are lots of options here.

2.1 Designation

Suppose we’re working with model theories in which consequence is preservation
of some status. In such model theories, there is some set of designated wffs in each
model; a model is a counterexample to an argument iff it designates all the premises
of the argument and none of its conclusions. In order to present a paraconsistent logic
in this way, there must be models on which A ∧ ¬A is designated, or on which both
A and ¬A are designated.

Here, I’ll give a few examples of ways in which this can be done for various
paraconsistent logics, demonstrating some of the techniques that can be used. Note
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at the outset, though, that there is no reason to expect any difficulty in achieving
paraconsistency; the only way to stop A ∧ ¬A from being designated is to impose
some restriction that rules it out. Don’t impose that restriction, and you’re good to
go. The real import of the techniques to follow is the way in which they allow for ∧
and ¬ to be recognizably conjunctiony and negationy, respectively, without making
the logic explosive.

One way to find a countermodel to explosion is to build models that split A off
from ¬A, evaluating each formula with respect to a different setting of some param-
eter. For example, one way to model subvaluationist logic is via is a pile of classical
models that share a domain; it is a model of a set of sentences iff for every sen-
tence in the set, some classical model in the pile is a model of the sentence.4 The set
{A, ¬A} is easy to model in this way: simply pile a classical model of A together
with one of ¬A. As it is possible to do this without including any classical models
of B in the pile, for at least some B, it follows that subvaluational consequence is
collection-paraconsistent.

Subvaluationism can only split A off from ¬A in this way if they are not
conjoined, as it works sentence-by-sentence. As a result, it is not conjunction-
paraconsistent, since no classical model is a model of A ∧ ¬A. But by shifting the
truth conditions for conjunction, we can achieve conjunction-paraconsistency via a
similar strategy, by allowing designation, once achieved, to flow from conjuncts to
the conjunction. This sort of approach to conjunction-paraconsistency is explored in
[34], yielding the logic LP, which is both collection- and conjunction-paraconsistent.5

Another well-trodden route to paraconsistency is indeterminism. For example, a
model theory for the ¬-∧-∨ fragment of Da Costa’s system Cω is given in [32, p.
162]. Models, on this approach, assign either 1 or 0 to each formula of the language;
the values assigned to conjunctions and disjunctions are determined by the values
assigned to their conjuncts and disjuncts in the expected way. But the values assigned
to negations are not determined by the values assigned to their negata, only con-
strained. In particular, A and ¬A cannot both receive the value 0, and A must receive
the value 1 if¬¬A does. (The logic PI given in [5, p. 191], whose predicate extension
has become known as CLuN [6], drops the very last requirement and is otherwise the
same.) This leaves open the possibility for both A and ¬A to take value 1, even while
some B take value 0, so this approach too allows for counterexamples to explosion.6

It’s also common to give designation-based model theories for paraconsistent log-
ics that rely neither on relativization nor on indeterminism. For example, the usual
three-valued model-theoretic presentation of the logic LP simply adds a third value
to the usual classical pair of values, and extends the functions that interpret the clas-
sical connectives to functions on the enriched value space. In particular, negation
takes the new value to itself. Both the old classical 1 and the new value are desig-
nated; as a result, if a wff takes the new value, both it and its negation are designated.

4This works for the subvaluationist ‘global’ consequence. For more on subvaluationist logic, see [11, 19,
46, 47].
5For more on LP, see [7, 26, 29].
6For more on the C systems, see [10, 13].
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This allows for counterexamples to explosion without any kind of relativization or
indeterminism.7

We can recast the relativized approach in this direct form. For example, we can
give an unrelativized model theory for subvaluationist logic by using Boolean alge-
bras; say that a formula is designated on an interpretation into such an algebra iff its
interpretation is not the bottom element of the algebra. As it’s possible for neither
A nor ¬A to be interpreted as the bottom, the collection-paraconsistency of sub-
valuationist logic is respected. Since it’s not possible for A ∧ ¬A to be interpreted
as anything other than the bottom, the conjunction-explosiveness of subvaluationist
logic is respected too.

The so-called ‘Australian plan’ for models for relevant logics uses a variant of the
relativized approach. The models in question consist of a number of points at which
formulas are evaluated, and each point a has an associated point a� (this star is the
so-called ‘Routley star’, named for [41]). This is a direct approach, since both A and
¬A can hold at a single point; but it shares something with relativized approaches,
since ¬A holds at a point a iff A does not hold at the possibly distinct a�. (For more
on the Routley star, see [15, 35].)

One nice feature of this approach is that it allows for structure to be passed between
positive and negative formulas. That is, constraints on when positive sentences can
or cannot be designated turn out to automatically influence when negative sentences
can or cannot be designated. For example, if conjunction exhibits familiar behaviour
at a point a�—that A ∧ B holds there iff both A and B do—then we directly have
corresponding behaviour for negated conjunctions at a—that ¬(A ∧ B) holds there
iff either ¬A or ¬B does. If the conjunction constraint holds for all points (as it often
does), then the negated-conjunction constraint too holds for all points. For simple
connectives like conjunction and disjunction, this is only a little simplification, but
when more involved connectives like relevant conditionals are added to the language
the simplification becomes very welcome indeed, and is one of the main reasons why
the ‘Australian plan’ is in more common use than the ‘American plan’, which does
not share this feature. (For more on the difference, see [40].)

2.2 Doing Without Designation

Failure to preserve a particular status is only one option, however, for saying when
a model is a counterexample to an argument. As a result, there are ways to give
counterexamples to explosion in certain logics without having to assign a special
positive status to any contradictions.

For example, many logics admit of a model theory on which a counterexample is
an interpretation in a complete lattice of an appropriate sort (which sort depends on
the logic in question) such that the greatest lower bound of the interpretations of the
premises does not stand in the lattice’s ordering relation to the least upper bound of
the interpretations of the conclusions. An example of this approach is the De Morgan

7Note that there is still something of an indeterministic flavour: if you know that A is designated, that’s not
yet enough to say whether ¬A is designated or not. But the facts that underlie this are fully deterministic.
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algebraic model theory given by Dunn [3, p. 180–206] for the paraconsistent logic
FDE.

By allowing for variations that replace greatest lower bound and least upper bound
in this approach with other sorts of operations, we can capture even more logics. This
way of formulating a logic, though, makes no attempt to see the logic as preserving
any particular status.8 On approaches like this, paraconsistency is likewise easy to
achieve. It would take work to make sure that A∧¬A is always interpreted below B,
for any A and B. (The easiest way is to ensure that A ∧ ¬A is always interpreted as
a minimum element.) By not bothering to do that work, paraconsistency is achieved.

There are other approaches as well. For example, [21] presents q-consequence
operations by using two distinct notions of designation: on this approach, a coun-
terexample to an argument takes all its premises to a value that is designated in
one sense, but takes its conclusion to a value that is not designated in the other
sense. This kind of approach can be used to specify a range of consequence relations
that do not fit into other approaches, and many of them are paraconsistent. (Indeed,
Malinowksi’s strategies enable us to consider a range of consequence relations that
extends all the way down to the empty relation—and this is certainly paraconsistent!)

3 Applications of Paraconsistent Logics

This section will sketch some applications of paraconsistent logics. It’s a biased
sketch, pointing mainly to issues I can say a little bit about; in no way does it come
close to exhausting the available applications. These applications are of particular
logics or particular kinds of logics; it is certainly not the case that just any paracon-
sistent logic will do. But it might help to give a sense of the sort of research programs
that paraconsistent logics naturally fit into. These applications have a predictable
thing in common: they involve collections of sentences containing some contradic-
tions (eitherA∧¬A or the pairA, ¬A), together with some desire to draw reasonable
conclusions from the set.

3.1 Compositional Semantics

Paraconsistent logics have arisen in compositional semantic theories of natural
languages in two main ways: first, as auxiliaries to theories of clause-embedding
environments of various sorts; and second, in the study of vague predicates.

3.1.1 Embedding Clauses

A compositional semantics for natural languages must eventually grapple with ques-
tions about the relations between clause-embedding environments and negation. It is

8Any fully structural logic can be seen as preserving some status; this is one upshot of Suszko’s Thesis; see
eg [16, 18, 43, 44]. But this is sometimes not the most helpful way to look at it. Moreover, the suggested
generalization of this method extends well beyond fully structural logics, as in [22].
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a commonplace that we all have some inconsistent beliefs.9 Yet we do not all believe
everything. So there are cases where ‘x believes that A’ and ‘x believes that ¬A’
are both true, but ‘x believes that B’ is not. The internal logic of belief, then, is
paraconsistent. The same point can be made for a wide variety of clause-embedding
constructions.

This does not show that our language is governed by a paraconsistent logic (what-
ever that might mean), but it is enough to reveal how paraconsistent logics, and
techniques developed by paraconsistent logicians, can be of use in studying natural
language, whether the language as a whole is governed by a paraconsistent logic or
not. The point is a familiar one, made for example in [42], but it has been revived in
recent years, and put to use in eg [28, 39].

3.1.2 Vagueness

A comprehensive theory of natural language must also say something about vague
predicates and their entailments. As explained in [19], there has long been an idea
that paraconsistency—and indeed inconsistency—ought to play some role here. This
is because one of the key features of vague predicates is their having borderline cases,
and one natural way to say that something is a borderline case of, say, blue, is to say
that it’s both blue and not blue.

Whether people who say things like this ‘really mean’ to contradict themselves or
not, paraconsistent logics provide useful tools for modeling and understanding this
way of talking. For example, there is some evidence that speakers agree to ‘both P

and not P ’ in the same kinds of circumstances in which they agree to ‘neither P

nor not P ’, for vague predicates P .10 A number of paraconsistent logics exhibit this
same feature; it is, after all, a consequence of a De Morgan equivalence together with
a double negation equivalence.

There is of course some controversy as to how best to model the evidence currently
available, and there is still much we do not know. For further discussion that shows
in more detail how paraconsistent logics of various stripes can be useful here, see [1,
12, 38, 51].

3.2 Inconsistent Mathematics

Mathematics involves the precise development of theories about a wide range of
things. Some of these theories are couched in classical logic, and some are not. To put
the point this way is perhaps contentious; the vast majority of contemporary mathe-
matics is conducted under the assumption of classical logic. But there have long been
exceptions.

9Typically, this is because we haven’t noticed the contradiction, but there are at least two other kinds of
case: 1) cases in which we notice the contradiction, but haven’t yet decided how or whether to resolve it,
and 2) cases in which we notice the contradiction, but have decided simply to live with it.
10See [2, 37] for details.
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Constructive mathematics provides perhaps the best-known kind of exception.
Constructive mathematics is not simply the study of familiar classical mathemati-
cal objects via a weaker constructive logic, like looking at something with one eye
closed to see how good your other eye is on its own. Rather, adopting a constructive
logical framework allows for the study of mathematical objects that cannot exist in
a classical framework. Weaken the logic, and you can strengthen the axioms without
becoming overstrong.11

Paraconsistent logics allow for axioms to be strengthened past the point of incon-
sistency without yet becoming overstrong. This is useful for exploring a variety of
mathematical entities that cannot be seen through a classical lens owing to paradoxes
of various sorts. Within set theory, for example, paraconsistent approaches allow for
the study of such critters as the russell set, the set of all ordinals, etc. Moreover, these
sets can be seen to have the (contradictory) properties they ‘should have’: in partic-
ular, both the russell set and the set of all ordinals both are and are not members of
themselves. In a paraconsistent setting, this can be handled without setting off the
explosions that would result elsewhere.

In a variety of different logical and axiomatic settings, of course, a variety of
results are forthcoming. Here, as elsewhere in mathematics, it is better for ten thou-
sand flowers to bloom. (See in this connection [30], as well as the full special issue in
which that paper appears.) There is a strong tradition of paraconsistent mathematics
(for examples and further references, see eg [9, 24, 27, 33]) that continues to thrive
today, being carried forward in a younger generation by thinkers such as Weber in
the Australian relevant tradition (eg in [49, 50]) and Verdée in the Belgian adaptive
tradition (eg in [48]).

4 Conclusion

To sum: there are a lot of different properties one might have in mind by ‘paraconsis-
tent’, there are a lot of different techniques one can use to construct counterexamples
to explosion, and paraconsistent logics find application in a wide variety of projects,
ranging from the study of natural language to pure mathematics, and well beyond.
There is also a fascinating history of interaction between various approaches and
schools, which I haven’t had space (or expertise) to go into here. I guess it might
be the history that explains why ‘paraconsistent logic’ can sometimes seem like one
topic. For an outline, see perhaps [4, 31].
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