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Abstract

The recent development and exploration of mixed metainferential logics is a break-
through in our understanding of nontransitive and nonreflexive logics. Moreover, this
exploration poses a new challenge to theorists like me, who have appealed to simi-
larities to classical logic in defending the logic ST, since some mixed metainferential
logics seem to bear even more similarities to classical logic than ST does. There is
a whole ST-based hierarchy, of which ST itself is only the first step, that seems to
become more and more classical at each level. I think this seeming is misleading:
for certain purposes, anyhow, metainferential hierarchies give us no reason to move
on from ST. ST is indeed only the first step on a grand metainferential adventure;
but one step is enough. This paper aims to explain and defend that claim. Along the
way, | take the opportunity also to develop some formal tools and results for thinking
about metainferential logics more generally.
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The recent development and exploration of mixed metainferential logics (for exam-
ple in [2, 3, 34, 35, 43]) is a breakthrough in our understanding of nontransitive and
nonreflexive logics. Moreover, this exploration poses a new challenge to theorists
like me, who have appealed to similarities to classical logic in defending the logic
ST (for example in [69]), since some mixed metainferential logics seem to bear even
more similarities to classical logic than ST does. There is a whole ST-based hierar-
chy, of which ST itself is only the first step, that seems to become more and more
classical at each level. I think this seeming is misleading: for certain purposes, any-
how, metainferential hierarchies give us no reason to move on from ST. ST is indeed
only the first step on a grand metainferential adventure; but one step is enough. This

< David Ripley
davewripley @ gmail.com

1" Philosophy Department SOPHIS Building 11, Monash University, 3800 Clayton VIC Australia

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10992-021-09615-7&domain=pdf
http://orcid.org/0000-0002-3356-0771
mailto: davewripley@gmail.com

D.Ripley

paper aims to explain and defend that claim. Along the way, I take the opportu-
nity also to develop some formal tools and results for thinking about metainferential
logics more generally.

In Section 1, I present the logic ST, and give a brief picture of some usual moti-
vations for it. Section 2 lays out a picture of metainferences at all levels, and proves
some general results about metainferential logics. Then, Section 3 returns to ST, now
in metainferential-hierarchy form, and presents the ST hierarchy of [35]. Finally,
Section 4 turns to the objection from [35, 43] and attempts to answer it.

1 ST
1.1 Language

Where not otherwise specified, I'm working with a propositional language £ built
on countably many atomic sentences, using the connectives —, A, Vv, T, and L, of
arities 1, 2, 2, 0, O respectively, and intended as negation, conjunction, disjunction,
verum, and falsum respectively.] For now, I use ¢, ¥, 6, . .. for arbitrary sentences,
and ', A, X, ... for sets of sentences. This is a simple and familiar language, and it
is enough for present purposes.

1.2 Models

Models are usual three-valued valuations on the strong Kleene scheme (see for
example [4] Ch. 8; [38] Ch. 7):

Definition 1 The value algebra U is the set {1, .5, 0} equipped with the following
operations —, A, V, T, L, of arities 1, 2, 2, 0, 0, respectively:
—xis 1 —x
X Ay is min(x, y)
x Vy is max(x,y)
Tis 1
1is O

A model is a homomorphism £ — 2. The set of all models is 91.
I'1l also have use for the subset of models that don’t use the value .5:

Definition 2 A 2-valued model is a model m such that for every ¢ € L, m(¢) €
{1, 0}. The set of 2-valued models is >.

11 think of this language as an algebra, as in [14, §4.3, 4.4], and do not distinguish between the algebra
itself and its carrier set, using the symbol £ for both and trusting in context and the reader’s generosity.
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One Step is Enough

By combining these definitions, you can see that 915 is the set of ordinary 2-valued
Boolean valuations; it’s handy to know that these are all in 1.

1.3 Consequence Via Counterexamples

We can use these models to specify consequence relations by setting up a counterex-
ample relation. I’ll be looking at a few different consequence relations, built from
different counterexample relations, all dealing with the same language £ and the sets
of models 2 and 21y So it’ll be handy to have some general definitions.

Definition 3 An inference [I" > A] is a pair of sets of sentences: premises I’
and conclusions A2 A consequence relation is a set of inferences; an inference
is valid according to a consequence relation iff it is a member of the consequence
relation.

Note that the definition of ‘consequence relation’ here is very general, imposing
no conditions at all on such a set.

Definition 4 A counterexample relation is a relation between models and inferences.
Given a counterexample relation X, a model m, and an inference [I" > A], I write
m[X][T > A] to mean that X relates m to [[" > A]. Given a counterexample relation
X, an inference [ > A] is X-valid (also written EX [I" > A]) iff there is no model m
such that m[X]J[T" > A].

This much works even for very strange choices of counterexample relation;
and much of this paper develops tools for working with arbitrary counterexample
relations. But it’s sometimes nice to restrict attention to ‘mixed’ counterexample
relations:>

Definition S Given P, C C {1, .5, 0}, the counterexample relation PC relates a model
m to an inference [ » A]iff m[I’'] € P and m[A]NC = @4

2T will use usual sequent-style abbreviations without further comment, so for example [T, I'’, ¢>] is the
inference [[TUT U{¢}> @]. For discussion of SET-SET and other frameworks, see for example [23, §1.21];
[47, Chs. 1, 2].

3Mixed consequence relations (that is, consequence relations based on mixed counterexample relations)
have been studied in many forms. For early sources, see for example [16, 22, 29] and [17, Ch. 3], which
itself points to [44, 52]. There are definite connections to ‘Strawson-entailment’, so-named in [57] after
[51, pp. 68-69, 176-177] (see [46] for more on Strawson entailment, and see footnote 1 in [11] for more
on the connection to mixed consequence). Some more recent applications involve particular attention to
theories of vagueness (for example [63]; [50, §5.2]; [72]) or semantic properties such as truth and validity
(for example [1, 32, 33, 64, 68]). More recently still, there has been an explosion of work on general
frameworks for understanding such consequence relations: see [7, 9-11, 61, 70, 71].

4By m[I'], I mean {m(y)|y € I'}.
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If you are comfortable with the idea of a designated value,’ you can think of
this as a slight generalization: we have a set P of premise-designated values and a
possibly distinct set C of conclusion-designated values. Then we count a model as a
counterexample to an inference iff the model premise-designates all the premises of
the inference without conclusion-designating any of the conclusions.

I’ll focus on two particular choices for these sets of designated values: the set
S = {1} and theset T = {1, .5}.° With just these two sets of values, we get four mixed
consequence relations for this language and these models: F5S, ETT =TS ST The
first two of these don’t need the idea of mixed consequence, since they use the same
standard of designation for premises and conclusions; these two are better-known as
the consequence relations of the logics K3 and LP, respectively.” However, ETS and
EST really do make use of the flexibility of mixed consequence.

1.4 2-Valued Counterexamples

Let’s restrict our attention for a moment to 2-valued models. The following Defini-
tion 6 is used only within this subsection:

Definition 6 Given a counterexample relation X, an inference [I" > A] is X-2-valid
(also written h)z( [T > A]) iff there is no 2-valued model m such that m[X][[ > A].

Since 2-valued models never use the value .5, the difference between S and T
disappears for these models. And so l=§s, |=£T, |=12-S, and I=§T are all the exact same
consequence relation.

The consequence relation they all are is the usual consequence relation of classical
propositional logic. This is because 2-valued models are usual Boolean valuations,
and a 2-valued counterexample (in any of these four senses) to an inference [I" > A]
is a model that takes all sentences in I" to the value 1 and all sentences in A to the
value 0, which is the usual notion of a classical counterexample.

In what follows, it will be useful to be able to appeal to these 2-valued classical
counterexamples. But rather than doing so by way of the mixed counterexample rela-
tions SS, TT, TS, ST, and in so doing needing to have a special definition of validity,
as in Definition 6, I will rather introduce a fifth counterexample relation—one that
is not a mixed counterexample relation, but is rather just the ordinary notion of a
Boolean counterexample.

Definition 7 The counterexample relation CL relates a model m to an inference [I" >
A]iff: mis 2-valued, m[I"'] C {1}, and m[A] C {0}.

Sas explored for example in [14, Ch. 7] or [62, Ch. 3]

SThese letters are for ‘strict’ and ‘tolerant’, and are taken from [63], where they are used ever so slightly
differently.

7See again [4, Ch. 8]; [38, Ch. 7] for these.
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CL is not a mixed counterexample relation: to determine whether a model is a CL
counterexample to an inference, we need to know more than just the values the model
assigns to sentences that occur in the inference. We need to know in addition whether
the model is a 2-valued model, and this involves knowing about the values it assigns
to every sentence in £, not just those sentences that actually occur in the inference.

When a model is indeed a 2-valued model, it is a CL counterexample to an infer-
ence iff it is an SS counterexample iff it is a TT counterexample iff it is a TS
counterexample iff it is an ST counterexample to that inference. So the CL coun-
terexample relation captures restriction to 2-valued models, and it also captures the
agreement of our four mixed counterexample relations over that restricted set of
models.

1.5 Upshots
In this subsection, I record a few ideas it’1l be handy to know as we go forward.
1.5.1 CL, ST, Vagueness, Truth

One important thing to note about FST is that it is exactly the same consequence
relation as EC-. That is, EST [I'> A]iff ECt [I'>- A]. Although ST and CL are two very
different counterexample relations, these two counterexample relations determine the
same consequence relation.

It is this combination of sameness and difference that underlies applications of ST
to paradoxes of vagueness and truth.® Most of this paper leaves these applications to
one side, but it’s worth briefly introducing them here, to make clearer what some of
the motivations are for exploring ST and its relatives.

In formulating logical theories of both vagueness and truth, the strong Kleene
models I'm using here, or corresponding models for richer languages, have often
proved fruitful.? However, these models are often associated with consequence rela-
tions weaker than EC4,10 and this has served as the basis for a number of objections
to the resulting theories.!!

However, by using ST counterexamples, these objections can be avoided. Theories
of vagueness and truth based on strong Kleene models proceed by imposing certain
restrictions on these models, corresponding to intuitive constraints such as tolerance
in the case of vagueness or transparency in the case of truth. But since =57 validates
every CL-valid inference while taking account of all strong Kleene models, these
restricted classes of models only validate more inferences; they continue to validate
all CL-valid inferences. So the resulting consequence relations for vagueness and
truth come out to be stronger than EC-. Any objections to the use of strong Kleene

8See for example [63, 66, 68].

9For example in [20, Ch. 11]; [21]; [25, Ch. IIT]; [26, 39, 45, 53, 55, 67].

10There are three usual candidates: the two here called S8 and ETT, and the intersection of these two.
See [6] for in-depth exploration of this intersection (in a different language), and [10] for discussion of
intersections of mixed consequence relations more generally.

For example in [19, Ch. 6], [24, pp. 103ff], [54], [60, p. 109ff].
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models that are based on invalidating classically-valid inferences do not apply to
ST.I2

1.5.2 Transparent Truth and Cut

Let’s look in just a tiny bit more detail at how this strategy can be used to offer a con-
sequence relation for transparent truth. For this subsubsection, I'm officially talking
about a first-order language with a truth predicate 7 and a special term (¢) for each
formula ¢, although the details of this don’t really matter.!> A consequence rela-
tion for this language includes transparent truth iff ¢ and T (¢) are interchangeable
everywhere, even as subformulas of some other formula, without affecting the valid-
ity of any inference. A strong Kleene model for this language is a transparent model
iff ¢ and T (¢) are always assigned the same value by the model. One way to give
consequence relations with transparent truth is by restricting attention to transparent
models.

Given certain assumptions, in such languages we can often form paradoxical sen-
tences, for example a liar sentence A that is =7 (A). If we have such a sentence,
however,then there can be no transparent 2-valued models.'* If a model assigns the
value 1 to A, then by transparency it would have to assign 1 to 7(X) and so O to
—T()\), which is just A again; so this doesn’t work. If a model assigns the value O to
A, then by transparency it would have to assign 0 to 7' (1) and so 1 to =T (), which is
just A again; so this doesn’t work either. But if the model is 2-valued, there is no other
value for A to receive. So if we restrict our attention to the set of transparent 2-valued
models, we are restricting our attention to the empty set—and no models means no
counterexamples, so every inference comes out valid. This total consequence relation
does indeed feature transparent truth, but that’s about the only nice thing you can say
about it.

On the other hand, even in the presence of paradoxical sentences of all kinds, there
are many transparent models; it’s just that none of them are 2-valued. Indeed, for any
model m at all, there are transparent models that differ from m only in their han-
dling of the truth predicate.!> Any mixed consequence relation over these transparent
models includes transparent truth. Let’s focus for a moment on the following notion:

12This is roughly the dual of the central argument of [66]. There, I defend classical logic against objections
from tolerant vagueness and transparent truth, proceeding proof-theoretically. Here, I'm sketching a way
to defend tolerant vagueness and transparent truth against objections from classical logic, proceeding
model-theoretically.

13There are a number of ways to achieve such naming devices; see [13, 26, 64] for three different options
that work in this kind of setting.

14See [18] for ways to achieve transparent 2-valued models by avoiding such sentences.

I5For demonstration that such models exist, see for example [27, 30, 45], all of which demonstrate this
fact in similar ways. [45, p. 4] includes an interesting historical paragraph (although frustratingly without
citations), concluding: “The problem of priority is not very acute: Fitch started in the mid-thirties and gets
the main credit”. Other useful discussions include [15, Chs. 3, 4, 16]; [28, 56]. Note also [8, 48, 49], which
are closely related.
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One Step is Enough

Definition 8 A model is an STT counterexample to an inference iff: it is transparent
and it is an ST counterexample to that inference.

Since all STT counterexamples to an inference are also ST counterexamples to that
inference, ESTT validates every inference that =ST does. That is, ESTT validates every
classically-valid inference.!® However, as it is built on transparent models, ESTT also
includes a transparent truth predicate, even in the presence of paradoxical sentences
of all kinds. So FSTT occupies an interesting position among logical approaches to
truth: it is nonclassical enough in its models to achieve transparency, but it does this
without invalidating any classically valid inferences.

But the pressure generated by the paradoxes is always vented somewhere. In this
case, it’s here: ESTT is not closed under the rule of cut. That is, there are ', A, and
¢ with ESTT [T > A, ¢] and ESTT [¢, " > A], but with #STT [I" > A]. In particular,
let A be a liar sentence as above, and let I’ = A = {J. As we saw, A must receive the
value .5 in any transparent model. So there is no STT counterexample to either [>-A]
or [A>], and thus ESTT [>1] and ESTT [A>-]. But every transparent model is an STT
counterexample to [>]; and as there are such models, #STT [>].

How can FSTT maintain the validity of all classically valid inferences while
not being closed under such a classical-seeming principle as cut? Well, because
instances of cut are not inferences. They are a different kind of thing: metainfer-
ences. The failure of ESTT to be closed under cut is one motivation, then, for studying
metainferences.

2 Higher Levels

For this section, you can forget entirely about the details of our language £ and
our models 9. I will lay out one particular way of thinking of metainferences,
metametainferences, and so on, but I will do this assuming only that we have some
set of sentences and some set of models. In the next section, we’ll have use again for
the propositional language £ and the strong Kleene models 21, but there is a bunch
of structure worth seeing that does not depend at all on which language or which
models we have in mind, and that structure is the topic of this section. This material
follows [3, 35, 43] in many places. But I hope the extra generality provides a useful
perspective.!”

2.1 Meta"inferences, meta” Counterexamples, meta” Consequence

The levels are £ = {—1} U N; throughout, variables i, j, k, m, n range over levels.
From here forward, I will use ¢, v, ... for minferences of all levels, and ', A, ...

16 Above, T pointed out that EST matches EC in our propositional language; that remains true in this
first-order language. See for example [64, 65].

17 This section consists, largely unavoidably I'm afraid, of a flurry of definitions and very simple proofs of
facts interrelating them. There is as yet no standard way of approaching this material, so a lot still has to
be done from scratch.
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for sets of minferences. (That means I'll be using ', A, ... for meta”consequence
relations and full consequence relations as well as for the components of minferences,
since sets of minferences play both roles.)

Definition 9 A meta~'inference is a sentence. A meta"linference [T’ » A] is
a pair of sets of meta”inferences: premise meta”inferences T' and conclusion
meta"inferences A. M, is the set of all meta”inferences, and M is |, ., M,,. The
members of M are the minferences.'®

Definition 9 has the consequence that a meta’inference is an inference.!® For
examples at higher levels, [[>¢]> [¢ > ¢, V], [y > ]l isa meta'inference (with one
premise inference and two conclusion inferences),

(UD-¢1>[¢>¢. ¥] [V >yl (Y >¥] [@-1>-D-v]] > ([, >, ]~ [o>- ]

is a meta’inference (with two premise meta'inferences and one conclusion
meta'inference), and so on. That last example is awful to parse, I know. It wasn’t that
easy to type, either. Fortunately, nothing in this paper is actually going to require you
to parse things like that, so we’re ok.

Definition 10 A meta” consequence relation is a subset of M,,, and a full conse-
quence relation is a subset of M. Given a full consequence relation ¥ and a level
n, the meta”consequence relation X(n) is ¥ N M,,. All of these are consequence
relations.

Definition 11 A meta” counterexample relation is a relation between models and
M,,. A full counterexample relation is a relation between models and M. Given a full
counterexample relation X and a level n, the meta” counterexample relation X(n) is the
restriction of X in its codomain to M,,.20 All of these are counterexample relations.
Given a counterexample relation X, a model m, and a minference p, I write m[X]ux
to mean that X relates m to p.

18“Metainference’ appears to be a relatively settled name for what I'm here calling ‘meta'inferences’,
so I needed a different name for the general collection. Note also that this definition joins [43] in
extending the SET-SET framework to all levels, in contrast with [3, 35], which restrict their attention to
meta” T linferences with a single conclusion meta”inference when n > 0.

YEven the small existing literature here is already not uniform in its level numbering. My level
numbering here agrees with [35], and differs from [3, 43]. The numbering I’'m using has the nice
consequence that meta'inferences are what are elsewhere called ‘metainferences’, metaZinferences are
‘metametainferences’, etc.

20That is, I will treat a full counterexample relation indifferently as on the one hand a relation between
models and M and on the other a function with dependent type (n : £) — M,,. For more on dependent
types, see for example [31, 59].
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It’s important to keep Definitions 10 and 11 clearly distinguished.?! This is
because much of the work to be done focuses on counterexample relations, but the
applications to be made of this work involve mainly consequence relations. The ideas
are not totally separate, however; they do relate to each other in a useful way. Given a
counterexample relation and a collection of models, we can determine a consequence
relation. Since I'm holding our collection of models fixed, we can talk simply of the
consequence relation determined by a given counterexample relation:

Definition 12 Given a meta”counterexample relation X, the meta”consequence
relation C(X) is the set {i € M, |there is no model m with m[X]u}. Given a full
counterexample relation X, the full consequence relation C(X) is the set {u €
M|there is no model m with m[X]u} =, c, C(X(n)).

This determination is not invertible. Multiple distinct meta” counterexample rela-
tions can determine the same meta” consequence relation, and multiple distinct full
counterexample relations can determine the same full consequence relation. (We’ve
already met an example of the first sort: ST and CL are distinct meta’counterexample
relations, and as we’ve already seen, C(ST) = (C(CL). Later, we will come to
the best-known example of the second sort.) This is one reason it is important to
stay focussed mainly on counterexample relations rather than consequence relations.
Consequence relations simply are not carrying enough information on their own;
the extra fineness of grain provided by counterexample relations plays an important
role.

2.2 Lifting and Lowering

It will be useful to explore relations between levels. The following operations of
lifting and lowering on counterexample relations come in for heavy use:

Definition 13 (Lifting) Given a meta”counterexample relation X, its lifting 1 X
is the meta”*!counterexample relation such that for any model m and any
meta”Hinference [T > A], we have m[1 X][T > A]iff: m[X]§ for all § € A but there
isnoy € I' with m[X]y.

Definition 14 (Lowering) Given a meta”*!counterexample relation X, its lower-
ing | X is the meta”counterexample relation such that for any model m and any

meta”~ linference w, we have m[[J, X iff m[X][>p].

We also have that lowering is a retraction (aka a left inverse) of lifting:

2lpailos [35] speaks of ‘consequence relations’, but I'm not entirely sure in what sense. Full counterex-
ample relations correspond most directly to [43]’s ‘logics’. (My level numbering, however, agrees with
[35]’s, and differs from [43]’s by one: in [43], sentences are at level 0, where as here, they are at —1.)
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Fact 1 For any meta” counterexample relation X, we have X = |1 X.

Proof For any model m and meta”inference p, we have m[| 1 X]p iff m [t X][>u].
This obtains iff m[X]u but there is no y € @ with m[X]y, which is to say it obtains
iff m[X] . O

However, the lowering operation is not injective, and so it has no full inverse; in
particular, it is not always the case that 1] X = X. For example, consider ST. | ST
relates a model m to a meta™ 'inference (which is to say a sentence) ¢ iff ST relates
that model to [>-¢]; this holds iff m(¢) = 0. And so 1| ST relates a model m to a
metalinference [ > A] iff m(8) = 0 forall § € A and m(y) # Oforall y € I'. This
is not ST but TT.?2

2.2.1 Coherence

With these notions of lifting and lowering in hand, we can ask how the different
levels of a full counterexample relation relate to each other. Two ideas will be needed:
downward coherence and n-upward coherence.

Definition 15 A full counterexample relation X is downward coherent iff for all
levels n, X(n) = | X(n +1).23

Definition 16 A full counterexample relation X is n-upward coherent iff for all levels
m>n,X(m+1) = 1 X(@m).

That is, a full counterexample relation is downward coherent iff whenever we
consider its restriction to two adjacent levels, the lower level is the lowering of the
upper one. And it is n-upward coherent iff whenever we consider its restriction to
two adjacent levels of at least level n, the upper level is the lift of the lower one. The
reason for the » in the notion of n-upward coherence, and its absence in the notion
of downward coherence, is just that the particular full counterexample relations to be
considered here are all downward coherent, but many are only n-upward coherent for
certain n. (Some aren’t n-upward coherent for any ».) But more on that when we get
to 1t.

22Indeed, in general for a mixed counterexample relation PC, we have 1| PC = CC, for the same reason.
For the generalization of this to all levels, see Fact 5.

23Scambler [43, pp. 359-361] discusses ‘the Eqs. 2—3 equivalence’, which is closely related. But there is a
difference: the Eqs. 2-3 equivalence applies to full consequence relations rather than full counterexample
relations, and while a downward coherent full counterexample relation always determines a full conse-
quence relation obeying the Egs. 2-3 equivalence, there are non-downward coherent full counterexample
relations that do so as well.
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2.2.2 Determining Full Counterexample Relations

By Definition 11, any full counterexample relation determines a
meta” counterexample relation immediately, by restriction. With lifting and lower-
ing in hand, we can go the other way, taking any meta”counterexample relation to
determine a full counterexample relation in a natural way as well:*

Definition 17 For o € {1, |}, let 0X = X, and let o'*' X = o'oX. Then a
meta” counterexample relation X determines the full counterexample relation X as
follows:

o fork>n,X(k) = 17X, and
o fork <n Xk) = J"*X2>

Fact 2 Any full counterexample relation determined by a meta" counterexample
relation is downward coherent.

Proof Take a X determined by some meta”counterexample relation X. We need to
show that for any m, X(m) = | (X(m + 1)). There are two cases:

® m > n: In this case, S(\(m) = """ X. By Fact 1, """ X = | X. And
LA X = DX = | X(m + 1),

e m < n:In this case, X(m) = "™ X. Since n —m > 1, this is J {"~™+D X,
And | "D X = | X(m + 1). 0

Fact 3 Any full counterexample relation determined by a meta" counterexample
relation is n-upward coherent.

Proof Take a full counterexample relation X determined by a meta” counterexample
Eglation X. We need to show that for any m > n, X(m + 1) = 1(X(m)). We have
X(m + 1) = D=0 X = p4pm=n X = 4 X(m). O

Fact4 For any n, if a full counterexample relation X is both downward coherent and
n-upward coherent, then it is determined by its nth layer X(n).

Proof We need to show for all m that X(m) = ([X’(;)](m)). There are two cases:

e m > n: In this case, ([X/(;)](m)) = M7 (X(n)). Since X is n-upward coherent,
this is X(m). -

® m < n:Inthis case, ([X(n)](m)) = }"*7™(X(n)). Since X is downward coherent,
this is X(m). O

24Cornpare [43, Defn. 16], which is less general but aimed at what I take to be a similar idea.
2These clauses overlap when k = n, but in this case they also agree, so no harm done.
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Corollary 1 A full counterexample relation is determined by its nth layer iff it is
downward coherent and n-upward coherent.

Proof Summing up Facts 2, 3 and 4. O

Let a full counterexample relation be principal iff it is determined by some
meta” counterexample relation, for some n. Then I will only directly consider two
non-principal full counterexample relation in this paper: what I will later introduce
as ST, and TS,,. All other full counterexample relations to be considered here are
principal, and so downward coherent and n-upward coherent, at least for some n.

Note that a meta’counterexample relation X, on its own, says nothing at all about
validity of meta”inferences for n # 0. Despite this, there is a tendency to move
quickly from X to X, at least for some purposes. For example, [43, p. 360, notation
changed] says, “[A]bsent any other reasons for suspicion one should probably take X
to be what someone has in mind if they only specify X”. I don’t think this tendency
is warranted. Most of the time, when someone has specified a metaocounterexample
relation (which is to say an ordinary counterexample relation), they do not have the
world of all higher minferences, full counterexample relations, etc, in mind at all.
They are often just focussed on validity for meta’inferences (which is to say infer-
ences). In what follows, I will look at particular meta” counterexample relations X in
part via the full counterexample relations X they determine, and I'll specify partic-
ular principal full counterexample relations by meta” counterexample relations that
determine them. But I'll still try to be careful about the distinction.

2.2.3 Climbing by Slashing

The lift operation 41 determines a meta”"!counterexample relation from a
meta” counterexample relation by applying that meta” counterexample relation uni-
formly to premise meta”inferences and conclusion meta”inferences. But, corre-
sponding to Definition 5, we can also determine a meta”*!counterexample rela-
tion from two possibly distinct meta”counterexample relations, one for premise
meta”inferences and the other for conclusion meta”inferences:

Definition 18 Given meta”counterexample relations P and C, the
meta”*! counterexample relation P/C is determined as follows: for any model m
and meta”linference [T > A], we have m[P/C][ > A] iff: for all § € A we have
m[C]§ and there is no y € I' with m[P]y.

Fact 5 For any meta” counterexample relations X, P, C, we have + X = X/X, and
1(P/C) =C.

Proof Unraveling Definitions 13, 14 and 18 O
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2.3 Moving to Consequence Relations

While some of the work to follow involves only counterexample relations, some also
involves the consequence relations they determine, and it’s useful to have a few tools
here as well.

2.3.1 Lowering Consequence Relations

Lowering does not require the fine grain of counterexample relations; we can lower
consequence relations directly, in a way that agrees with lowering for counterexample
relations.

Definition 19 Given a meta”!consequence relation ¥, let | X be the
meta”consequence relation {u € M, |[>-u] € £}.

n+1

Fact 6 For any meta" ™' counterexample relation X and meta" inference u, we have

CAX) =1 CX).

Proof Combining Definitions 12, 14 and 19. O

However, the same is not possible for lifting. This is because there can be
meta” counterexample relations X and Y with C(X) = C(Y) but C(+ X) # C(1Y).
Indeed, we have already met such: C(ST) = C(CL), but C(1ST) # C(4 CL).26
So there cannot be any operation 1 on consequence relations such that in gen-
eral 1 C(X) = C(1 X). Lifting depends on information carried by a counterexample
relation that is lost in the move to the consequence relation it determines.

2.3.2 Agreement

I’ll be occupied in what follows with the situation where two distinct full coun-
terexample relations determine the same meta” consequence relation, or when they
determine the same full consequence relation.

Definition 20 Full counterexample relations X, Y agree at level n (written X =2, Y)
iff C(X(n)) = C(Y(n)). They agree fully (written X ~ Y) iff C(X) = C(Y).

Fact7 If X and Y are downward coherent and X ~, Y, then X =, Y for allm < n.

Proof 1t suffices to show that X &,_; Y, assuming n > 0. Since both are downward
coherent, X(n — 1) = | X(n) and Y(n — 1) = { Y(n). So C(X(n — 1)) = C({ X(n)),
which by Fact 6 is |, C(X(n)), and similarly C(Y(n — 1)) = | C(Y(n)). AsC(X(n)) =
C(Y(n)),thenC(X(n — 1)) =C(Y(n — 1)). O

20This follows from Facts 15 and 9, to come.
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So as long as we’re dealing with downward coherent counterexample relations,
agreement at level n suffices for agreement up fo and including level n.

There is no corresponding fact involving n-upward coherence. Note the involve-
ment of Fact 6 in the above proof, and recall that this has no analog for lifting
instead of lowering. Indeed, ST and CL are O-upward coherent (since determined by
metaocounterexample relations), and ST &%y CL, but ST %, cL.?

3 The ST, and TS, Hierarchies

Enough generalities. Let’s return now to our propositional language £ and strong
Kleene models 991, and turn to the central idea of [35, 43]: the ST, and TS,
hierarchies of counterexample relations. This proceeds by mixing at every level.

Definition 21
° o ST_j relates a model m to a meta™ 'inference (sentence) ¢ iff m(¢) = 0
o TS_ relates a model m to a meta™ !inference (sentence) ¢ iff m(¢p) # 1
. o ST,4+1isTS,/ST,
o TS,4+11s ST, /TS,

This captures ST and TS, since STop = ST and TSy = TS, but it goes much farther,
giving ST-like and TS-like meta” counterexample relations for every 1.8

3.1 Exploring Both Hierarchies

Here, I present some fact about these hierarchies.
First, note that lowering brings us back down them:

Fact8 ST, = | ST,y1 and TS, = | TS,41.

Proof By Fact 5. O

But lifting does not bring us up; it does not even bring us to a place that agrees on
consequence:

Fact9 Foralln, S/ﬁ En+1 S/T,H\l and T/S\n En+1 @.29

27 As in Footnote 26, this follows from Facts 15 and 9.

28Scambler [43] names the ST, hierarchy after T, and the TS,, hierarchy after S, with some justice. I don’t
do that here mainly to try to limit the potential confusion from the fact that my level numbering is different.
So each of my ST,s is [43]’s T;,+1, which in turn corresponds to [35]’s CM,,.

29See also [35, Thm. 5.5] and [43, Lemma 22].
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Proof By Fact 5, ST, = ST,/ST, and 1TS, = TS,/TS,. So for the first
claim, it suffices to give a meta™tlinference in C(TS, /ST, (n + 1)) but not in
C(ST,/ST,(n + 1)); and for the second, it suffices to give a meta”*!inference in
C(TS, /TS, (n + 1)) but not in C(ST,, /TS, (n + 1)).

Let ¢ be an atomic sentence. Let ¢_1 = ¢ and ¢p+1 = [>¢r]. Let (—¢p)—1 = —¢
and (—¢@)r+1 = [-(—¢)r]. Note by induction on k that for all k: every model is a TSy
meta¥ counterexample to at least one of ¢, (—¢)k, and any model m with m(¢) = .5
is not an STy metakcounterexample to either of ¢y, (—¢)k. Since ¢ is atomic, there
are plenty of such models.

Now let pgt+1 = [¢r, (—¢p)i>]1; by the above, pi41 is in both C(TS, /ST, (n + 1))
and C(TS,/TS,(n+ 1)), but not in either of C(ST,/ST,(n+1)) or
C(ST,/TS,(n + 1)). O

This in turn assures us that all levels of these hierarchies are distinct:

Corollary 2 ifi < jand i < k, then ST; %, STy and TS; % TSy.

Proof Suppose §:I'\, A §\Tk By Fact 2 both §ﬁ and §:I'\k are downward coherent, and
so by Fact 7, ST; ~;, STx. By Fact 5, ST¢(i+1) = STi41, 50 ST; ~j41 STi41. This
contradicts Fact 9. The same argument works on the TS side of the hierarchy. O

In addition to the members of these hierarchies, we can use them to specify two
additional full counterexample relations.

Definition 22 ST, is the full counterexample relation such that ST, (n) = ST,. TS,,
is the full counterexample relation such that TS, (n) = TS,,.

Unlike all the other full counterexample relations in this paper, these two
full counterexample relations are not principal; they are not determined by any
meta” counterexample relation, for any n. If they were, by Fact 3, they would be
n-upward coherent, but they are not:

Fact 10 ST, and TS, are downward coherent, and they are not n-upward coherent
for any n.

Proof Downward coherence is from Fact 5 and Definition 21. To see that they are
not n-upward coherent, choose any »n and suppose ST, to be n-upward coherent. This
implies that 4+ ST,, = ST,41, which contradicts Fact 9. ]

To explore these hierarchies more fully, I'll use the following ordering on strong
Kleene models:

Definition 23 Let T be the smallest partial order on {1, .5, 0} such that .5 C 1 and
.5 £ 0. For models m, m’, let m = m/ iff for all sentences ¢, we have m(¢p) = m/(¢).

Fact 11 If m(¢) T w/(¢) for all atomic sentences ¢, then m = m'.
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Proof By induction on sentence formation, noting that all connectives are monotonic
wrt C; that is, for any u, v/, v, v’ € {1, .5, 0}:

o ifyC i, then —~u C —u';
o fuCuandvC v, thenu AvCu Av;and
e the same goes, mutatis mutandis, for v, T, L. O

Fact 12 If m C w/, then: if m is an ST, meta" counterexample to a meta" inference

W, then so isw'; and if w is a TS,, meta" counterexample to a meta" inference i, then
. 30

50 is m.

Proof By induction on 7. O

Corollary 3 Ifm C w/, then: if m is an ST, counterexample to a minference i, then
soisw'; and ifw' is a TS, counterexample to a minference [, then so is m.

Finally, note the relation to CL and 2-valued models. We know that a 2-
valued model is a CL meta’counterexample to a meta’inference p iff it is an ST
meta’counterexample to  iff it is a TS meta’counterexample to s. This relationship
extends to all levels:

Fact 13 Take any 2-valued model m and any meta" inference (1. Then m[[élt(n)]] wiff
m[ST,Ju iff m[TS,]u.

Proof Induction on n, noting that a_(n +1) = a_(n) / a_(n). O]
3.2 The TS Hierarchy

I won’t linger on the TS hierarchy, except to point out one striking thing about
it: as we climb the hierarchy, a single model grows in importance for determining
consequence. And at the limit TS,,, we can forget about all other models altogether.
Fact 14 Let m 5 be the model such that ms(¢) = .5 for every atomic sentence ¢. If

mis a TS, meta" counterexample to a meta” inference [, then m s is as well. If m is a
TS, counterexample to a minference |, then m s is as well.

Proof By Fact 11, m 5 © m. The result follows from this by Fact 12. O

Corollary 4 For any m < n, a meta™ inference is TS,, valid iff the single model m s
is not a TS, counterexample to it. For any m, a meta™ inference is TS,, valid iff m 5
is not a TS, counterexample to it.

30Compare [71, Fact 1], [43, Lemma 20].
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3.3 The ST Hierarchy

Here, I look in particular at the ST, s and ST, drawing out facts that apply only on
this side of the hierarchy.

Fact 15 [43, Lemma 21] For any n: S/ﬁ ~, CL

Proof We need to show that C(ST,) = C(CL(n)).

LTR: Any éT_(n) meta’ counterexample to a meta”inference is also an ST,
meta” counterexample to it, by Fact 13.

RTL: Take any ST, meta”counterexample m to a meta”inference. Consider any
model m’ such that for all atomic sentences ¢: m’(¢) € {1, 0} and if m(¢) € {1, 0}
then m/(¢) = m(¢). By Fact 11, m T w/, and so by Fact 12, m’ is a ST,
meta” counterexample to the same meta”inference. Since for all atomic ¢, we have
m/(¢) € {1,0}, we can show by induction on i that for all sentences ¥ we
have m'(y) € {1,0}; that is, m’_is 2-valued. Since m’ is 2-valued and an ST,
meta” counterexample, it is also a CL(n) meta” counterexample, by Fact 13. O

Corollary 5 For any m, n: S/\Tn R min(m,n) S/ﬁn

Proof\Wlog, letm < n. By Fact 15 we have ST'I-'; X CL and §\Tn %/,,\éT_ SiESe §\Tn
and CL are downward coherent by Fact 2, then blfact 7 we have ST, ~,, CL. And
since &, is symmetric and transitive, this gives ST,, ~,, ST,. O]

Corollary 6 [43, Thm. 23] ST,, ~ CL

Proof Immediate from Fact 15. O

So we have C(STy,) = C(éT.); ST, gives us exactly the same full consequence
relation as CL does. Despite this matching, the underlying models remain very dif-
ferent. ST,, uses the full space of strong Kleene models, while CL ignores all but
the two-valued models. As a result, ST, inherits the flexibility provided by strong
Kleene models. For example, just as we saw for STy in Section 1.5.2, ST, too can be
nontrivially extended to a first-order language with a transparent truth predicate, and
now while maintaining the validity of every CL valid minference at all levels.

4 An Objection to ST

The existence of the ST, hierarchy, and perhaps especially of ST,,, has been seen
to pose a challenge to advocates of ST. Since ST is just ST, why stop there? In
particular, if we’re seeking agreement with classical logic, why wouldn’t we want to
pursue the additional agreement with CL achieved by higher levels of this hierarchy,
or even the total agreement achieved by ST,,?
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Something like this objection to ST has been pressed by those who have explored
this hierarchy. Here’s [34, emphasis both removed and added, notation changed]:3!

Non-classical theories of truth pursue two conflicting desiderata. On the one
hand, they search for a paradox-free transparent truth predicate. On the other
hand, they want to retain as much classical logic as possible. . .. Thus, though it
might be argued that ST seems to do much better than the other inferential non-
classical solutions to paradoxes—precisely because it resolves paradoxes while
‘mutilating’ less classical logic than the other non-classical theories, ST; seems
to work even better than ST. ST retains every classically valid inference, as ST
does, but, moreover, it recovers every classically valid metainference—while
ST loses Cut (and many other classically valid metainferences) (19).

And here is [43, notation changed]:

[T]he proponent of logics like [ST] as solutions to the paradoxes faces some
difficult questions. First, they must say whether or not they mean to generalize
their view to higher finite levels. If they don’t, they must explain why the ‘more
classical logic is better’ line of thought. .. is misguided (368).3>

As someone who has defended ST and some of its relatives as providing valuable
approaches to paradoxes,> I was initially pulled by this kind of objection. But I've
come to think that that was a mistake, and in this section I explain why.

4.1 What'’s Being Objected To

First, it’s important to clarify the target of the objection. The counterexample rela-
tions ST and ST are distinct: the first says only when a model is a counterexample
to a meta’inference, while the second says when a model is a counterexample to a
meta’inference for any level £. As far as I know, nobody has so far put forward any
endorsement of ST, only of ST. And as I’ve pointed out above, an advocate of ST as
a useful meta’counterexample relation has thereby taken on no commitments at all
regarding meta” counterexample relations for n > 1.

The quoted passages, however, seem to assume that any advocate of ST in fact
means to advocate ST as well. They then try to push for adopting ST1, ST2, cees
or perhaps implicitly ST, instead of ST, on the grounds that these full counterex-
ample relations agree with CL at higher and higher levels. But the assumption is
unwarranted, and this means that the objection fails immediately as an objection
to ST. After all, ST = ST,(0) = ST»(0) = ... = ST,(0). So one thing all
these full counterexample relations agree on is that ST gives the correct story for
metaocounterexamples. So if, say, ST, is correct, then the advocate of ST turns out

31See also the concluding section of [35].
32This passage as written talks about ST, not ST. I’ve substituted ST because I think this is a typo, since it’s
not clear what it would mean to ‘generalize ST to hi gher levels’. After all, STis already a full consequence
reldtlon ([43] uses ‘T’ for STand * Ty’ for ST, so it would be a small typo.)

3in for example [65, 68]
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to be right: ST,, goes beyond ST, but they match perfectly everywhere ST has any-
thing to say. The disagreements between the full counterexample relations under
consideration are all at higher levels, where ST makes no pronouncements.

The real objection here, then, i/s\ not to ST at all, but to ST—and again, as far as
I ’know, nobody has yet endorsed ST for any purpose. However, the objection is still
worth thinking through, to see if it perhaps gives a good reason not to endorse ST. In
the rest of this paper, I argue that it does not; any hypothetical or future advocates of
ST should not be swayed by this objection.

4.2 Why Be Classical?

One initial reason to be suspicious of the objection is that it relies on the claim that
‘more classical logic is better’. But nobody should seek to be classical just for classi-
cality’s sake. Classical logic has had detractors for as long as it has existed, and many
of those detractors have had very good reasons for their worries. It’s true that classical
logic gained a certain sort of hegemonic status in some philosophical communities in
the late 20th century, but that moment (fortunately) seems to be past us now.3*

Classical logic is an inheritance we’ve received, not a goal we’re aiming for. Like
any cultural inheritance, it contains many different strands: its two-valued model the-
ory, its Boolean model theory, various proof systems, philosophical commitments
to bivalence or noncontradiction (which themselves take various forms), multiple
distinct second- and higher-order formulations, and so on. We might well want to
hold to some of these while abandoning others. The objection in question, though,
depends on a very particular understanding of ‘classical logic’: CL. It also depends
on a very particular understanding of what ‘more classical logic’ is: full agreement
with C (ﬁ_(z)) for higher and higher levels £. We need to ask whether the reasons
often given in support of ‘classical logic’ fit with these very particular understand-
ings, and—so understood—whether they fit with the idea that ‘more classical logic
is better’. In fact, I know of no defense of classical logic that does.

Most applications of classical logic, and so most defenses of it, are based on one of
two aspects of it: its two-valued model theory,>> or its meta’consequence relation. For
an example of the first kind of defense, consider [60, p. 186, emphasis in original]:

[Cllassical semantics and logic are vastly superior to the alternatives in simplic-
ity, power, past success, and integration with other theories in other domains.
It would not be wholly unreasonable to insist on these grounds alone that
bivalence must somehow apply to vague utterances. ..

(‘Classical semantics’ here means specifically familiar 2-valued model theory, on my
reading of this passage.) And for an example of the second kind of defense, consider
[50, p. 223]:

34 For useful remarks written while that moment was ongoing, see for example [42, Introduction], [36];
[37].

35 Although I focus on two-valued models here, work on Boolean-valued models as in [5, Ch. 1] plays
out the same for present purposes; note that the three-valued models used throughout this paper are not
Boolean.
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[M]y definition yields a classical consequence relation, and this is impor-
tant... An important constraint on a definition of validity is that it counts
intuitively valid forms of reasoning as valid—and the classically valid inference
forms are all prima facie paradigms of valid reasoning. . .

Arguments for classical logic that proceed in either of these ways, though, cannot
fit with Pailos’s and Scambler’s objections. This is because these objections focus
on similarities between ST1 or ST, and CL that are not shared Wrth ST But the use
of two-valued models distinguishes CL alone out of these: all of ST STl, and ST,
make use of the full range of strong Kleene models. So no argument for CL based on
two-valued models could fit the bill for Pailos and Scambler, since ST1 and ST, are
not any more similar to CL on this count than ST is. All three are equally dissimilar
from CL in this regard.

A focus on the metaconsequence relation determined also cannot distinguish any
of these, as they all yreld the exact same meta’consequence relation. So no argument
for CL based on its n meta’consequence relation could fit the bill for Pailos and Scam-
bler either, since ST1 and ST, are again not any more similar to CL on this count than
ST is. The consequence relations C(CL(0)), C(ST(0)), C(ST1(0)), and C(ST,,(0)) are
all identical 3

Existing defenses of classical logic, then, do not at all fit with the idea that ‘more
classical logic is better’, where ‘more classical logic’ is understood as full agree-
ment with C(CL(¢)) for higher and higher levels £. So what would it take to support
CL in a way that fits with Pailos’s and Scambler’s objections? To be compatible
with the objection’s focus on consequence relations, such support should be based
on consequence relations, and not on particular selections of models. And to tell the
difference between ST and ST; or ST, such support must consider meta”inferences
for n > 1. For example, someone might argue that all meta'inferences of the form
[(('>-A, ¢l [¢, "> A]> [I" > A]] ought to be validated. As all such meta 1nferences
are valid in C (CL) in C (ST]) and in C(ST,,), but not all in C (ST) a defense of CL
on these grounds would fit with the objection.?’

While such a defense of CL would indeed fit with the objections I’'m considering
here, it would do more than this: it would replace them entirely. An argument for
the validity of a minference that is invalid in STis just directly an objection to ST
already, on its own. There’s no need for any detour via closeness to CL. The argu-
mentative situation around any such objection to é?, then, should turn purely on how
well-supported the validity of that minference is or isn’t. The ‘more classical logic is
better’ objection pressed by Pailos and Scambler simply falls by the wayside.

36This focus on the resulting meta’consequence relation is present in a number of defenses of ST, for
example [40, p. 156]:

[Classicality] is the core of the advantages of the ST approach over [nonclassical approaches to
truth]. There is no need, from an ST-based perspective, ever to criticize (on logical grounds) any
classically-valid inference. As such, there is no need for the ‘classical recapture’ that so exercises
many non-classical theorists.

(Thanks to an anonymous referee for pointing out this quotation.)
37111 return to a similar idea in a moment, in Section 4.3.
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To sum up this subsection: the objection to ST under consideration only works
if we have reason to seek similarity to C (él\_). We have reason to seek similarity to
C(éT.) only insofar as we have reason to think that C(é\L) is getting things right. But
existing reasons for thinking that ‘classical logic” is getting things right aren’t about
CL or C(CL) at all. Moreover, most sgc\h reasons focus either on 2-valued models or
on g\(CE)js/alld so either tell against ST, STy, and ST, all equally; or else support all
of CL, ST, STy, and ST, equally. Either way, this puts no pressure on a hypothetical
advocate of ST to adopt §ﬁ or ST, instead.

4.3 Obeying Higher Minferences

Even if the objection pressed by Pailos and Scambler fails, however, it might seem
that there is an easy objection to ST in the area, one that doesn’t turn on similarity to
CL at all, but instead simply looks directly at plausible-seeming meta‘inferences for
£ > 1. For example consider meta inferences of the form [[¢> /], [ > p]>-[¢>p]l.

These meta'inferences are all in C (CL) C (ST1) and C(ST,), but not all in C (ST)

For example, where p, g, r are distinct atomic sentences, [[p>q], [g>r]>[p>r]]is
not in C(ST). If we had good reason to prefer counterexample relations that validate
such metalinferences, then, we would have good reason to prefer S/T\l or ST, to ST

At first blush, it might seem like we obviously have such good reason. After all,
the metainferences in question seems to be a particularly simple form of ‘transitivity’
of consequence: they seem to say that if [¢ > ¥] is valid and [y > p] is valid, then
[¢ > p] is valid. And that is widely considered a minimal requirement for anything
like a sensible n meta’ consequence relation. 39 So it can seem we have a direct argu-
ment against ST and for ST1 or STy, based on meta 1nferences like these. If simple
transitivity is a desideratum, and ST, and ST, have it while ST lacks it, then this
gives a reason to adopt one of the former two over the latter.

In this case, though, appearances are misleading. Simple transitivity is one thing,
and metalinferences of the form [[¢ >~ ¥], [ > p] > [¢ > p]] are quite another.
The former is a property of meta’consequence relations; some are simply transitive
while others are not. The latter are meta'inferences, syntactic objects. The ‘direct
argument’ above depends on conflating the two, and so it simply fails. In particu-
lar, C(ST(0))—which is just C(ST)—is simply transitive; after all, it is the familiar
meta®consequence relation of classical logic.*"

We should close, then, by thinking about one more relationship between adjacent
levels: the relationship that, where it obtains, would connect metalinferences like
[[¢ >~ ¥]1, [V > p] > [¢ > p]] to simple transitivity.

Bnot C ((/)I\_) !

3This is called ‘simple transitivity’ in [58], which, even while arguing against other commonly-accepted
forms of transitivity, has “I am sympathetic to the idea that. .. simple transitivity. .. should be incorporated
in any genuine notion of logical consequence” (100).

40Indeed, C(ST) has much stronger transitivity properties as well, as can be seen by the same reasoning.
For discussion of some of these properties, see [41].
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Definition 24 A meta”consequence relation %, obeys a meta”*!consequence rela-
tion ¥, 4 iff for every [I" > ¢] € ¥4, either there is some y € I" with y ¢ &, or
¢ € x,.
A full consequence relation X is self-obeying at level n iff X (n) obeys X (n + 1).
A full counterexample relation X is self-obeying at level n iff C(X) is, and self-
disobeying at level n otherwise.

Interlude on Definition 24 Note that this definition uses only single-conclusion min-
ferences. This is important! The property arrived at by generalizing this to multiple
conclusions is too strong for my purposes. This interlude clarifies the situation, I
hope. First, here’s the stronger property we might consider:

Definition 25 A  meta’consequence relation X, strongly obeys a
meta” ! consequence relation X, iff for every [I" > A] € X,,1, either there is
some y € A with y € ¥, or there is some § € A with § € X,,.

A full consequence relation X is strongly self-obeying at level n iff ¥ (n) obeys
Xn+1).

Scambler [43, p. 367] says that a full consequence relation that is strongly self-
obeying at all levels is ‘closed under its own laws’. However, this is not connected
to ‘closure’ in the ordinary sense. A closure operation C on a partially ordered set
(S, <) is an operation C : S — § such that for all x, y € S, we have C(x) < C(y)
iff x < C(y).*! Given such an operation, an x € S is closed iff x = C(x).

Now, consider the following two very small full consequence relations: ¥, =
{[>p, ql, p}, and X, = {[>p, q], q}. These are strongly self-obeying at every level.
And consider also X, = {[>p, q]}; this is not strongly self-obeying at level —1.
However:

Fact 16 If we consider full consequence relations as ordered by C, then any closure
operation C on full consequence relations such that ¥, and ¥, are both closed is
also such that % is closed as well.

Proof Since X, and X, are closed, they are C(X,) and C(X;), respectively. And
since X, € C(X;) and X, € C(Xp), then as C is a closure operation we have
C(Z.) CC(Z;and C(X,) C C(Zp); thatis, C(XZ.) € C(XZ,) N C(Zp). That is to
say, C(X;) € ¥, N ¥, = X.. And (again, since C is a closure operation) we also
have ¥, C C(Z;). So X, = C(Z,); that is, X is closed. O]

So the property of being strongly self-obeying at every level cannot be understood
as the property of being closed under any closure operation on full consequence
relations, at least if we’re considering them as being ordered by C. By contrast,
being self-obeying at every level is the property of being closed under the following

4lgee for example [12, Ch. 7].
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operation:
C(®) = ﬂ{E’lE/ is self-obeying at every level and ¥ € X'}

(This works for self-obedience but not strong self-obedience because the former but
not the latter is itself closed under intersections.) The language of being ‘closed’,
then, fits with self-obedience, not with strong self-obedience.*? By way of transition
back to the main thread of the text, note that the following Fact 17 would be false
for strong self-obedience, as C (CL) for example, is self-obeying but not strongly
self-obeying at level —1.

End interlude.

Fact 17 If a full counterexample relation X is n-upward coherent, then X is self-
obeying at level m for allm > n.

Proof Suppose that for a particular meta™linference [I" > ¢], that I' € C(X(m))
and ¢ ¢ C(X(m)); it suffices for the claim to show that some model is a X
meta” ! counterexample to [I" > ¢]. Since X is n-upward coherent, we have that
P X(m) = X(@m + 1), so to be a metam+lcounterexample to [I" > ¢] is to be a
meta” counterexample to ¢ without being a meta” counterexample to any y € I.
But since I' € C(X(m)), no model is a meta” counterexample to any y € I'; and as
¢ € C(X(m)), some model is a meta™ counterexample to ¢. O

Interestingly, even though as we’ve seen ST is not m-upward coherent for m < n,
it’s still the case that ST,, is fully self-obeying.

Fact 18 For all m, n, S/\T,, is self-obeying at level m.

Proof Since S/ﬂ is n-upward coherent by Facts 3 by 17 S/ﬂ is self-obeying at m for
allm > n. For m < n, however, we have S/ﬁ, Xy CL and S/T\,, 1 él\_, by Facts 15
and 7. By Facts 3 and 17, CLis self-obeying at every level, and so self-obeying at m.
But since being self-obeying at m is just a matter of which minferences are validated
at levels m and m + 1, this means that ST is self-obeying at m as well. O

Corollary 7 For all m, ST, is self-obeying at m.

But this only goes so far. In particular, it depends on the agreement with CL. Recall
Section 1.5, however; in the intended applications of these strong Kleene models, the
aim is to explore restricted classes of models for which ST and CL no longer agree,
for applications at least to vagueness and truth.

“2Relatedly, [68, p. 849] defines ‘metainferences’ as ‘principles under which a consequence relation might
(or might not) be closed’; this closure-based way of thinking is sensible enough for the single-conclusion
metalinferences considered there, but does not easily extend to multiple-conclusion minferences.
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Rather than developing full theories of vagueness or truth here, it’s enough for
present purposes to see how things play out if we choose some particular atomic sen-
tence A and develop new counterexample relations that in effect restrict our models
to those models m for which m(}) = .5:

Definition 26 Given a counterexample relation X, let XA be the counterexample rela-
tion such that a model m is a XA counterexample to a minference w iff both mis a X
counterexample to ; and m(A) = .5.

It is immediate that there are no CLA counterexamples to any minference (since
any such counterexample would need to both be 2-valued and to assign the value .5
to ), and so C(CLA) is the set of all minferences. So we can really just forget about
CLA.

Let’s look, though, at what happens to the ST, hierarchy. First, C(ﬁ (0)) is no
longer simply transitive, for £ > 0; nor is C(ST,,). For example, for atomic sentences
P, g, distinct from each other and from A, these metaoconsequence relations contain
[p > A] and [A > g], but not [p > g]. If simple transitivity is a desideratum, this
is a problem—but it is again a problem shared equally by S/T\)L, ﬁ, and STyA.
Moreover, none of C (S/T\A), C (ﬂ), or C(ST,A) is self-obedient at level —1, since
all contain A and [A > L], but none contains L. If self-obedience is a desﬁgatum,
this is again a problem—and again, it is a problem shared equally by STA, STy A, and
STyA. -

There are some interesting differences, however. We have that C(STy1) and
C(ST,A) contain [[p > A, [ > q] > [p > ¢]], while C(S/TEL) does not contain this
metalinference. With considerations of self—obgii\ence to the fore, this difference
matters: it provides an example showing that C(ST;A) is self-disobeying at level 0.

Indeed, as [43, Thms. 29, 30] show, for all m < n, S/T;» is self-disobeying at level
m, and ST,A is self-disobeying at all levels. We also know by Facts 17 and 3 that for
allm > n, S/'I'Dx is self-obeying at level m. Climbing up the ST hierarchy thus pushes
self-obedience farther and farther off into higher levels, until at the limit, ST, pushes
self-obedience out of reach entirely.

What to make of this? Again, CLJ is off the table, because it’s the empty coun-
terexample relation. We're supposing that the set of meta’inferences common to
C (S/ﬁ»), C (S/TF\), and C(ST,A) is a good story about meta’inferential validity, and
trying to think about what to make of the higher-level differences. Here, if self-
obedience is a desideratum for counterexample relations, then STA outperforms the
others. None of these are self-obedient at level —1; unlike S/Tl\k and ST,A, how-
ever, ST is self-obedient at all other levels. Any reason to treat self-obedience as a
desideratum, then, is a reason to prefer STA to these other counterexample relations.
Whether or not there is such a reason is something for future work to consider.

Conversely, any reason to treat validating [[p>q], [g>r]>-[p>7r]] as a desideratum
would be a reason to prefer S/T-l\)» or S/T;\ to STA. But the desire for simple transi-
tivity provides no such reason, as none of these counterexample relations determines
a simply transitive consequence relation.
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5 Conclusion

The study of minferences, and mixed consequence relations on them, reveals a great
deal of new texture in what seemed to be relatively familiar ground. In this paper, I've
tried to develop a set of relatively useful and relatively general tools for exploring
this texture. I’'ve also showed how to apply these tools to the TS, and ST, hierarchies
and tried to answer an objection to ST due to [35, 43], as well as a related objection
based on simple transitivity. Finally, I’'ve looked at the status of self-obedience, and
pointed out that that if we want a full counterexample relation that matches ST at
level 0 and is as self-obedient as possible, STA seems to be the way to go.

Funding Research partially supported by “Logic and Substructurality”, Grant FFI2017-84805-P, Govern-
ment of Spain, and by “Substructural logics for bounded resources”, FT190100147, Australian Research
Council.
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