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Abstract. In a recent series of papers, I and others have advanced new logical approaches to
familiar paradoxes. The key to these approaches is to accept full classical logic, and to accept the
principles that cause paradox, while preventing trouble by allowing a certain sort of nontransitivity.
Earlier papers have treated paradoxes of truth and vagueness. The present paper will begin to extend
the approach to deal with the familiar paradoxes arising in naive set theory, pointing out some of the
promises and pitfalls of such an approach.

§1. Introduction. In a recent series of papers Cobreros et al. (2012), Cobreros et al.
(2013), Ripley (2012), Ripley (2013a), and Ripley (2013b), I and others have advanced
new logical approaches to familiar paradoxes. The key to these approaches is to accept full
classical logic (in a certain sense), and to accept the principles that cause paradox, while
preventing trouble by allowing a certain sort of nontransitivity. Earlier papers have treated
paradoxes of truth and vagueness. The present paper will begin to extend the approach
to deal with the familiar paradoxes arising in naive set theory, pointing out some of the
promises and pitfalls of such an approach.

Naive set theory, for my purposes here, is a theory of sets with two ingredients: com-
prehension and extensionality. Comprehension guarantees that, for any formula with one
variable free, there is a set that contains all and only the things that satisfy the formula. This
guarantees the existence of perfectly ordinary sets, like the set of all even numbers, as well
as the existence of paradoxical sets, like the set of all nonselfmembered sets (the russell set,
which will play a prominent role in what follows). With comprehension in place, there is
no need for many of the separate existence axioms used in ZF set theory: we automatically
have the existence of pair sets, union sets, images under functions, and so on, directly from
comprehension. If the language can state a condition, there is a set answering to it.

Extensionality is the principle that set identity depends only on membership: if two sets
have the same members, they are in fact the same set. Without extensionality, as I see
it, we do not have a set theory at all, but only something like a property theory. Distinct
properties can be instantiated by the very same things, but distinct sets must have some
difference in membership. Comprehension gets most of the press in many treatments of
naive set theory, but extensionality is no less challenging. In a variety of different logical
settings, extensionality can cause trouble. But here, extensionality will not be so difficult.

The set theory to be described in this paper will start from a formulation of first-order
classical logic, and will add comprehension and extensionality. The resulting system will
allow for proofs of the existence of sets of all sorts, including paradoxical sets. Nonetheless,
as I will show, the theory is nontrivial: many things cannot be proven in it. (In fact, I will
show something stronger—quantifier-free model-theoretic conservativity—from which
nontriviality is a quick corollary.)
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The remainder of the introduction will present a sequent system for classical logic; it is
this sequent system that will serve as the base logic for our set theory. The system is to some
extent arbitrary; many different presentations could work for the same purpose. I’ll call
attention to those features that matter. §§2 considers three ways of adding comprehension
to our sequent system. I will take a goldilocks approach, and argue that two of them
miss the mark: one is too weak and one is too strong. The third is just right. Similarly,
§§3 considers three ways of adding extensionality. Again, one is too weak and one is too
strong, while the third is just right. Once I have presented the final formulations of both
comprehension and extensionality, we will be ready to consider models for the system;
§§4 does just this. As I will show there, this set theory has much in common with naive set
theories built on the paraconsistent logic LP, despite the very different way I’ll arrive at it.
I will use the models presented there to demonstrate the nontriviality of the system.

1.1. The base logic. I’ll work with a standard first-order language with equality, in-
cluding set-abstract terms {x : A} for every formula A and variable x , as well as the more
usual constants and variables, and a distinguished binary predicate ∈ for membership.

One goal of the nontransitive approach I’ll be pursuing here is to validate all arguments
that are valid in classical logic. This will be achieved by working within a sequent formu-
lation of classical logic with identity; the additional rules for handling naive sets will only
add to this system. The system I’ll use is given in Figure 1; I’ll call it CL=, to have a name
for it.1 Most of the precise details of CL= are not very important; there are many other
possible formulations of classical logic that would work just as well.

Some of its details are very important, though. Cut is the following rule, which is quite
crucially not a rule of CL=:

[� : A,�] [�′, A : �′]
[�,�′ : �,�′]

Cut encodes a certain form of transitivity of the consequence relation in question. Although
cut is not a rule of CL=, it is admissible. That is, where CL=+ is the system that results
from adding the rule of cut to CL=, any sequent derivable in CL=+ is already derivable in
CL=. So I’m not depriving us of any validities by avoiding cut. But I am leaving myself
room I would not otherwise have—room to extend the system in novel directions. More
later.

The other feature of note in this sequent calculus is the two drop rules: ⊥-drop and =-
drop. These are slightly different from more usual formulations, which use axioms [⊥ : ]
and [ : t = t]. In the presence of the axiom [A : A], these usual axioms can be quickly
derived using the drop rules. On the other hand, deriving the drop rules from the usual
axioms requires use of a cut rule. In the absence of cut, then, the drop rules are stronger
than the usual axioms.2

1 In a sequent [� : �], � and � are finite sets of wffs; by using sets we avoid any need for structural
rules of contraction or exchange. As usual, I abbreviate things like [� ∪ {A} : ∅] as [�, A : ], and
so on. Further, in this figure, A/B can be either A or B, t can be any term whatever, and a is an
eigenvariable: a variable that does not occur free in the conclusion-sequent of its rule.

2 Since cut is admissible (for now), there is no immediate upshot to this difference. The difference
will reveal itself in a moment, when the system is extended to one that does not admit cut. This
drop-rule strategy for handling axioms without cuts is taken from Negri & von Plato (1998). These
drop-rule formulations are equivalent to the usual axiom formulations together with a highly
restricted rule of cut, which allows cuts only on ⊥ or t = t .
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Axioms:
Id:

[A : A]
Structural rules:

[� : �]
KL:

[�, A : �]
[� : �]

KR:
[� : A,�]

Operational rules:
[� : �, ⊥]⊥-drop:

[� : �]

[� : A,�]¬L:
[�, ¬A : �]

[�, A : �]¬R:
[� : ¬A,�]

[�, A/B : �]∧L:
[�, A ∧ B : �]

[� : A,�] [� : B,�]∧R:
[� : A ∧ B,�]

[�, A : �] [�, B : �]∨L:
[�, A ∨ B : �]

[� : A/B,�]∨R:
[� : A ∨ B,�]

[� : A,�] [�′, B : �′]⊃L:
[�,�′, A ⊃ B : �,�′]

[�, A : B,�]⊃R:
[� : A ⊃ B,�]

[�, A : �]∀L:
[�, ∀x A[x/t] : �]

[� : A,�]∀R:
[� : ∀x A[x/a],�]

[�, A : �]∃L:
[�, ∃x A[x/a] : �]

[� : A,�]∃R:
[� : ∃x A[x/t],�]

= rules:
[�, A : �]

=L1:
[�, t = u/u = t, A[u/t] : �]

[� : A,�]
=L2:

[�, t = u/u = t : A[u/t],�]

[�, t = t : �]
=-drop:

[� : �]

Fig. 1. The calculus CL=.

It can be shown by the usual techniques that this calculus is sound and complete for
familiar classical models; this is full classical logic. Moreover, it will remain fully in force
throughout the paper; no axiom or rule will be weakened or given up. The goal is to treat
naive set theory by adding to classical logic, rather than by taking anything away.

But—and this is the fun part—we can add selectively, if we choose. Although the given
system admits cut, the same is not true of all its extensions. It’s possible to add validities
without adding everything that would follow from those validities via cut. By doing this,
it’s possible to arrive at various nontransitive systems stronger than classical logic.

Moreover, these nontransitive systems can be quite interesting for the treatment of
various befuddling phenomena. This is just the tactic I and others have used elsewhere
(eg Ripley, 2013a, 2013b; Cobreros et al., 2012) to provide treatments of familiar para-
doxes of truth and vagueness that manage both to accept strong intuitive principles (trans-
parent truth, tolerant vagueness) and to preserve the validity of every classically-valid
argument. It is the tactic I’ll use in this paper as well, to explore the possibilities for adding
naive comprehension and extensionality to CL=. The resulting system will show that the
approach has promise for the paradoxes of naive set theory as well.
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§2. Comprehension. This section will consider three different ways to add naive
comprehension to CL=. The first two are more traditional, and I will show that neither
of them will work. One is far too weak, and the other far too strong. The third approach
may be a bit less familiar, but it is just right.

2.1. As an axiom. I’ll call ∃y∀x(x ∈ y ≡ A), with y not free in A, the naive
comprehension schema, or NC. A number of other approaches to naive set theory (Brady,
1989; Priest, 2006; Restall, 1992; Routley, 1977; Weber, 2012) fix on NC to express their
naivete.3 And indeed, we should expect all instances of NC to be theorems of any naive set
theory: a failure of NC would indicate a failure of full comprehension.

We might try to be as straightforward as possible about this, and simply add to CL= the
axioms [ : A], for any instance A of NC. Call the resulting system NC1. This has one
pleasant (and immediate!) effect: all instances of NC are theorems of NC1.

Moreover, the paradoxes are handled in just the way I’m going for: cut is no longer
admissible in NC1. To see this, consider the russell set. Since the base system CL= is
classical, there is a cutfree derivation in NC1 of [a ∈ a ≡ a �∈ a : ]. Starting from there:

[a ∈ a ≡ a �∈ a : ]∀L:
[∀x(x ∈ a ≡ x �∈ x) : ]∃L:

[∃y∀x(x ∈ y ≡ x �∈ x) : ]

In NC1, we also have as an axiom [ : ∃y∀x(x ∈ y ≡ x �∈ x)]. Thus, if cut were admis-
sible in NC1, the empty sequent would be derivable. But the empty sequent is not derivable
in NC1.4 So NC1 includes the full naive comprehension schema, and succeeds in handling
the resulting paradoxes by failing to admit cut. These are just the sort of features I’m
looking for here. But still, NC1 will not do; it is far too weak.

For example, there is no derivation in NC1 of the sequent [ : ∃y(t ∈ y ⊃ Pt)].5 But
this ought to be a very direct consequence of naivete; just let y be the set of Ps. Then if t is
in y, it must indeed be P . If something this simple is not a theorem of NC1, there is little
hope of being able to use NC1 to work with sets in any useful way. We need something
stronger.

2.2. As a drop rule. A natural second thought is to stick with the NC schema, but to
impose it via a drop rule of the sort used in CL= for ⊥ and t = t . That is, we might add the
following rule, for every instance A of NC:

[�, A : �]
NC-drop:

[� : �]

3 Of course, different logics have different conditionals, and most of these authors have used
distinctive conditionals in their formulations of NC. Here, I stick to the material conditional
without considering other options, which would take me too far afield.

4 NC1 is far weaker than my eventual target system; it will be proven in §4.2 that this target system
includes no derivation of the empty sequent. Alternately, see footnote 5 for a more direct strategy.

5 Due to the presence of the drop-rules, NC1 doesn’t have the subformula property. But it has the
almost-subformula property: in any derivation, all formulas that appear are either 1) subformulas
of formulas appearing in the conclusion sequent, or 2) ⊥, or 3) t = t , for some term t . Now
it’s quick to show there’s no derivation of [ : ∃y(t ∈ y ⊃ Pt)]. NC itself doesn’t meet any of
the three conditions in this case, so any derivation can’t have involved the NC axiom; thus, the
sequent is derivable in NC1 iff it’s derivable in CL=. But the consequence relation determined by
CL= is just the familiar classical consequence relation, and this sequent clearly isn’t classically
valid.
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In words, if a sequent is derivable with an instance of NC as a premise, then the instance
can be dropped; the sequent is derivable without the instance as well. Let NC2 be CL= plus
NC-drop. As I mentioned above, in the absence of cut a drop rule like this is strictly
stronger than its corresponding axiom. As such, one might hope that NC2 gets more than
NC1 did.

This is, alas, too right. NC2 is trivial. There is a derivation of the empty sequent, and via
the K rules this allows for any sequent at all to be derived. One way of doing this goes via
the familiar russell set. Above, we saw that [∃y∀x(x ∈ y ≡ x �∈ x) : ] is derivable in in
CL=. But then it is only one step to disaster:

[∃y∀x(x ∈ y ≡ x �∈ x) : ]
NC-drop:

[ : ]

So NC2 is hopeless.
NC, then, is not the right approach to take to comprehension in this setting. One can

either have NC imposed via an axiom (as in NC1), which is all well and good but not
enough, or have it imposed via a drop rule (as in NC2), which is overstrong and trivializes
the resulting system. These failures lead me to turn away from NC-based approaches to
naive comprehension altogether.

2.3. The comprehension rule. There is another option, however. Rather than trusting
in NC to do the work, there’s a way to establish the connection between ‘t is P’ and ‘t is a
member of the set of Ps’ more directly. The goal is to ensure that A(t) and t ∈ {x : A(x)}
should be interchangeable; this can be established with a pair of (two-way!) rules:

[�, A(t) : �]
CompL:

[�, t ∈ {x : A(x)} : �]

[� : A(t),�]
CompR:

[� : t ∈ {x : A(x)},�]

Let CL=Comp be CL= plus these rules.6 So A(t) and t ∈ {x : A(x)} are interchangeable
in CL=Comp, as premises or as conclusions. It follows from this, by induction on formula
construction, that they are interchangeable as subformulas of premises and conclusions as
well.7

CL=Comp, then, has one of the key features that motivated naive set theory in the first
place: predications of all sorts are fully interchangeable with the corresponding membership
statements. There is no difference, in this system, between the claim that t is P and the
claim that t is a member of the set of Ps—except that the latter claim includes a term
‘the set of Ps’ to be quantified over, substituted for, etc.8

6 In the use of these rules from top to bottom, there is no assumption that t is free in A(t), nor is
there any assumption that every free occurrence of t is replaced with x . For example, if A(t) is
t = t , then A(x) can be t = t , t = x , x = t , or x = x . That is, t’s self-identity is interchangeable
with its membership in each of the following: 1) the set of things such that t is self-identical,
2) the set of things that t is identical to, 3) the set of things that are identical to t , and 4) the set of
things that are self-identical. On the other hand, in the use from bottom to top, we must require
that every free occurrence of x in A(x) is replaced with t to yield A(t); otherwise we might end
up with newly-free xs floating about.

7 There is another, slightly weaker, natural option here; I will discuss it briefly in §4.1. But the
Comp rules above will be my main focus.

8 An anonymous referee worries that this goes too far, that ‘the informal idea behind naive
comprehension’ only requires NC or some relative, rather than this full intersubstitutability. While
I cannot give the issue the full discussion it deserves here, the situation seems to me strikingly
analogous to one in the theory of naive truth; what I’m offering here can be seen as something
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This is enough to get all the benefits of NC1, limited as they were. Recall that [A : A] is
derivable, for any formula A. Then we have:

[A(x) : A(x)]
CompL:

[x ∈ {y : A(y)} : A(x)]⊃R:
[ : x ∈ {y : A(y} ⊃ A(x)]

[A(x) : A(x)]
CompR:

[A(x) : x ∈ {y : A(y)}]⊃R:
[ : A(x) ⊃ x ∈ {y : A(y)}]∧R:

[ : A(x) ≡ x ∈ {y : A(y)}]∀R:
[ : ∀x(A(x) ≡ x ∈ {y : A(y)}]∃R:

[ : ∃y∀x(A(x) ≡ x ∈ {y : A(y)}]
This shows that CompL and CompR suffice to render every instance of NC a theorem of

CL=Comp. So CL=Comp is at least as strong as NC1; there is no need to take the instances
of NC as axioms.

But CL=Comp in fact goes well beyond NC1. Recall the sequent [ : ∃y(t ∈ y ⊃ Pt)].
Where NC1 could not derive this sequent, CL=Comp derives it in just the way you’d
expect:

[Pt : Pt]
CompR:

[t ∈ {z : Pz} : Pt]⊃R:
[ : t ∈ {z : Pz} ⊃ Pt]∃R:
[ : ∃y(t ∈ y ⊃ Pt)]

CL=Comp also avoids the triviality that infects NC2, as will be shown in §4.2. So
CL=Comp sails between the Scylla of NC1 and the Charybdis of NC2; its naivete is strong
enough to demonstrate the sort of results that a naive set theory ought to include, but not so
strong as to trivialize the system. Since CL=Comp includes NC1, it must be nontransitive
to be nontrivial, just as NC1 was. So it embodies the strategy I’m aiming for.

§3. Extensionality. CL=Comp, I think, is a fine theory of naive properties. It allows
for a fully naive treatment of all sorts of paradoxical properties by adding naive compre-
hension to a cutfree presentation of classical logic and allowing transitivity to fail.

But there is no need to stop there. As I mentioned in the introduction, the goal here is
to give a full naive set theory. Sets, though, are unlike properties, in that their identity is
determined by their extensions: sets with the same members must be the same set. Nothing
in comprehension guarantees that. It is a separate demand.

This is where a variety of theories, naive and otherwise, run into trouble. For example,
in Łukasiewicz’s infinite-valued logic, naive comprehension on its own causes no trouble
(White, 1979), but the addition of extensionality trivializes the resulting system (allows any
sentence at all to be proved) (Restall, 1994, p. 225). In a quite different setting, Hinnion
& Libert (2003) shows that extensionality is sufficient to trivialize in a classical setting
together with only a very limited form of comprehension. Restall (2013) develops this into
a quite general challenge to naive set theories of various stripes.9 Another example: Gris̆in

like a deflationist approach to set membership, although one quite unlike that of Incurvati (2012).
Just as in the case of truth, deflationism can motivate naivete, but naivete itself does not seem to
require deflationism. See also Beall (2009), Glanzberg (2005), and Shapiro (2011).

9 The set theory of this paper provides an answer to Restall’s challenge, which I take to be deep
and serious. In brief: Restall shows that any nontrivial set theory must reject at least one of a very
small list of very plausible-looking principles. Standard sophisticated set theories, for example,



NAIVE SET THEORY AND NONTRANSITIVE LOGIC 559

(1982) develops a contraction-free theory for naive comprehension that trivializes on the
addition of extensionality. In yet another setting, Field (2008) offers a consistent naive
property theory, but as is shown in Field et al. (2014), this logic (and its successor in Field,
2014) cannot accommodate extensionality.

Finally, even where extensionality can safely be added, it is often a lot of work. For
example, Brady (2006) lays out a naive set theory, but must devote an entire chapter—and
the hardest part of the proof—to showing that extensionality causes no trouble.

So extensionality is very much not just to be had for free. But it can be had. Here, I will
consider three ways of adding extensionality to CL=Comp. Again, one will turn out to
be too weak, a second too strong, and the third just right. Moreover, the eventual target
formulation of extensionality fits into the nontriviality proof in a particularly elegant and
simple way; because of this, it may have applications in nonstandard set theories more
generally.

3.1. As an axiom. Consider ∀x∀y(∀z(z ∈ x ≡ z ∈ y) ⊃ x = y), which I’ll call E.
This sentence is a natural statement of extensionality. At the very least, it ought to be a
theorem of a naive set theory.

We could opt for the straightforward approach, and simply take [ : E] as an axiom.
Let E1 be CL=Comp plus this axiom. E1, it turns out, is again far too weak to be helpful.
It does not allow even simple sequents like [ : (∀x(Px ≡ Qx)) ⊃ {x : Px} = {x : Qx}]
to be derived.10 But this should surely be a theorem of a properly extensional set theory.

3.2. As a drop rule. This might lead us to reach for a drop-rule formulation.

[�, E : �]
E-drop:

[� : �]

Let E2 be CL=Comp plus E-drop. Unfortunately, E2 is trivial; there is a derivation of the
empty sequent. In what follows, let h be the empty set {x : ⊥}, let r be the russell set
{x : x �∈ x}, and let w be the weber set {x : r ∈ r}.11

I’ll proceed in stages, for readability. First, derive [r ∈ r : ]:

[r ∈ r : r ∈ r ]¬L:
[r ∈ r, r �∈ r : ]

CompL:
[r ∈ r : ]

Second, derive [ : r ∈ r ]:

reject Restall’s version of naive comprehension, but so too do the naive set theories explored in
Restall (1992) and Priest (2006). The naive set theories of Brady (2006) and Weber (2012), on
the other hand, reject Restall’s extensionality principle, despite accepting their own versions. In
other words: these going naive theories shy away from strong formulations of comprehension and
extensionality. The present theory rejects only the rule of cut from Restall’s list.

10 This can be shown by a strategy not unlike the one in footnote 5. Note in particular that no rule
allows us to instantiate the quantifiers in a quantified sentence; no sequent rule removes any
quantifiers that appear in its premise-sequents. The initial quantifiers in E, then, are ‘stuck on’
and cannot be put to use.

11 So-called because of the exciting uses to which it’s put in Weber (2010, 2012). I should here be
understood as introducing abbreviations; that is, where I write something like [r ∈ r : ], that
should be read as an abbreviation of [{x : x �∈ x} ∈ {x : x �∈ x} : ]. Recall that I’m using sets
of formulas for my sequents; this means there will sometimes be contractions implicit in my
derivations. For approaches to naive set theory that focus on blocking these contractions, see eg
Gris̆in (1982), Petersen (2000), and Restall (1994).
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[r ∈ r : r ∈ r ]¬R:
[ : r ∈ r, r �∈ r ]

CompR:
[ : r ∈ r ]

The main derivation of [ : ] continues from these starting points, and can be found in
Figure 2. So E2 is no use. (Note that the full derivation goes through in CL=Comp until
the penultimate step. That much of it will be back later.)

3.3. The extensionality rule. Again, the key is to avoid a sentential formulation of
extensionality altogether. The target strength of extensionality is given by the following
rule, taken from Restall (2013):

[�, a ∈ t : a ∈ u,�] [�, a ∈ u : a ∈ t,�]
Ext:

[� : t = u,�]

As before, t and u here are any terms, while a is an eigenvariable. This allows for derivation
of E as a theorem, as in Figure 3.

Unlike the attempt to add E as an axiom, though, Ext allows for derivation of
[ : (∀x(Px ≡ Qx)) ⊃ {x : Px} = {x : Qx}]; the derivation is similar to the one in Fig-
ure 3, with a few applications of Comp rules inserted. Unlike the drop-rule approach,
it remains nontrivial.12

3.3.1. Impure set theory. This is almost the final formulation. There is just one more
feature that needs to be added, though; we must restrict the extensionality rule to sets. After
all, extensionality is not a general principle of identity. Suppose � tells us that t and u

[ : r ∈ r ]
CompR:

[ : z ∈ w]
=L2:

[w = h : z ∈ h]
CompR:

[w = h : ⊥]

[⊥ : ⊥]⊥-drop:
[⊥ : ]

KR:
[⊥ : z ∈ w]

CompL:
[z ∈ h : z ∈ w]⊃R:

[ : z ∈ h ⊃ z ∈ w]

[r ∈ r : ]
CompL:

[z ∈ w : ]
KR:

[z ∈ w : z ∈ h]⊃R:
[ : z ∈ w ⊃ z ∈ h]∧R:

[ : z ∈ w ≡ z ∈ h]∀R:
[ : ∀z(z ∈ w ≡ z ∈ h)]⊃L:

[∀z(z ∈ w ≡ z ∈ h) ⊃ w = h : ⊥]∀L (x2):
[∀x∀y(∀z(z ∈ x ≡ z ∈ y) ⊃ x = y) : ⊥]

E-drop:
[ : ⊥]⊥-drop:
[ : ]

Fig. 2. Deriving the empty sequent with E-drop.

[a ∈ x : a ∈ x] [a ∈ y : a ∈ y]⊃L:
[a ∈ x ⊃ a ∈ y, a ∈ x : a ∈ y]∧L:
[a ∈ x ≡ a ∈ y, a ∈ x : a ∈ y]∀L:

[∀z(z ∈ x ≡ z ∈ y), a ∈ x : a ∈ y]

[a ∈ y : a ∈ y] [a ∈ x : a ∈ x]⊃L:
[a ∈ x ⊃ a ∈ y, a ∈ y : a ∈ x]∧L:
[a ∈ x ≡ a ∈ y, a ∈ y : a ∈ x]∀L:

[∀z(z ∈ x ≡ z ∈ y), a ∈ y : a ∈ x]
Ext:

[∀z(z ∈ x ≡ z ∈ y) : x = y]⊃R:
[ : ∀z(z ∈ x ≡ z ∈ y) ⊃ x = y]∀L (x2):

[ : ∀x∀y(∀z(z ∈ x ≡ z ∈ y) ⊃ x = y)]

Fig. 3. Deriving E.

12 I won’t quite show this here, as I’m about to make one final modification to the system, but the
strategy I take in §4.2 could easily be adapted.
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are both elephants, and further tells us that nothing is a member of any elephant. Then
we will indeed have the premises of our extensionality rule. But we do not want to con-
clude that any two elephants are identical! It is only for sets that membership determines
identity.

In a pure set theory, of course, there is no need to take account of this restriction;
everything talked about in such a theory is a set. But a naive set theory should not have
to be a pure set theory. It should work as an impure set theory as well. One of the main
goals of a naive set theory is to allow for use of sets in an intuitive way to reason about
any topic at all. For example, consider model-theoretic semantics for natural languages: it
would be nice to be able to specify an intended model. The domain of such a model should
be a set that includes everything. In some sophisticated set theories like ZF, there is no
such set. In naive set theories, there can be, but only if the naive set theory is an impure
one.13

One way to handle this is by including in our language a distinguished predicate S for
‘. . . is a set’, and this is the route I’ll pursue. With this predicate in hand, here are two
possibilities for a restricted extensionality rule:

[�, a ∈ t : a ∈ u,�] [�, a ∈ u : a ∈ t,�] [� : St,�] [� : Su,�]
ExtS1:

[� : t = u,�]

[�, a ∈ t : a ∈ u,�] [�, a ∈ u : a ∈ t,�]
ExtS2:

[�, St, Su : t = u,�]

ExtS2 follows from ExtS1, since we have [St : St] and [Su : Su] as axioms, and can
weaken in any other needed side premises or conclusions. But the converse does not hold
without cut. I don’t see any particular reason to prefer either of these to the other, so I will
work with ExtS1. Since this is the stronger rule, the nontriviality result below will cover
both of them.

We also need to make sure, now that S is on the scene, that all set abstracts name sets.
To do this, I’ll use another drop rule:

[�, S{x : A} : �]
S-drop:

[� : �]

Finally, the full system is on stage: CL=Comp, plus ExtS1, plus S-drop. This is the target
set theory. Call it NST, for ‘naive set theory’.

§4. Models. In this section, I’ll sketch a model-theoretic way to think about NST.
Despite the affinities between the sequent formulation given above and classical logic,
the model theory I’ll present here is more closely tied to strong kleene logic and the
paraconsistent logic LP. NST has its proof-theoretic foot in the classical and its model-
theoretic foot in the nonclassical. (The same is true of the nontransitive approaches to
other paradoxes I’ve cited above; this is what gives these approaches their of-both-worlds
flavour.)

The models I’ll use are three-valued models on the strong kleene scheme. That is, a
model is a pair 〈D, I 〉 of a domain and an interpretation, and I assigns members of the
domain to terms, appropriate constructs of the usual sorts to predicates and relations, and
values from the set

{
1, 1

2 , 0
}

to sentences so that:

13 Of course, there is more to this than can be said here; these remarks are purely motivational.
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• I (Pa1a2 . . . an) = I (P)(〈I (a1), I (a2), . . . , I (an)〉),
• I (⊥) = 0,
• I (t = u) = 1 iff I (t) = I (u),
• I (t = u) = I (u = t),
• I (¬A) = 1 − I (A),
• I (A ∧ B) = min(I (A), I (B)),
• I (A ∨ B) = max(I (A), I (B)),
• I (A ⊃ B) = max(1 − I (A), I (B)),
• I (∀x A(x)) = min(Ix (A(x)), for all x-variants Ix of I , and
• I (∃x A(x)) = max(Ix (A(x)), for all x-variants Ix of I .

To deal with NST, we need to require in addition that:

• I (t ∈ {x : A(x)}) = I (A(t)),
• I (S{x : A(x)}) = 1, and
• If I (St) > 0, I (Su) > 0, and I (t = u) = 0, then there is some d ∈ D such that

either I (∈)(〈d, I (t)〉) = 1 and I (∈)(〈d, I (u)〉) = 0 or else
I (∈)(〈d, I (t)〉) = 0 and I (∈)(〈d, I (u)〉) = 1.

Each of these restrictions deals with one of the rules specific to NST. The first handles
comprehension, the second handles S-drop, and the third handles ExtS1. Call a structure
that meets all the other constraints, but possibly not these three, a premodel.

A (pre)model 〈D, I 〉 satisfies a sequent [� : �] unless I (γ) = 1 for every γ ∈ � and
I (δ) = 0 for every δ ∈ �, in which case it does not satisfy the sequent. A sequent is valid
iff every model satisfies it. Note that, in order to fail to satisfy a sequent, a model must go
from value 1 for the premises all the way to value 0 for the conclusions; a mere decrease
from 1 to 1

2 or from 1
2 to 0 is not enough. As such, this definition of consequence is a bit

out of the ordinary for polyvalent logics: it involves neither a notion of designated value
nor a simple order-theoretic approach.

It’s easy to show that NST is sound for these models: given the definitions above, every
axiom is valid, and all rules preserve validity. I make no claim to completeness; when it
matters, I’ll distinguish NST proper from NSTm, where NSTm is the logic (whatever it is)
that is determined by the above model theory. I’ll show nontriviality directly for NSTm; it
follows by soundness that NST too is nontrivial.

4.1. Comparison with LP. One more familiar approach to naive set theory is based
on the logic LP, and is discussed in Restall (1992) and Priest (2006). This approach uses
strong kleene models as well, but defines consequence differently, using the idea of desig-
nated values. Both 1

2 and 1 count as designated values on an LP approach. Then a model
LP-satisfies a sequent unless it assigns a designated value to every premise and an undes-
ignated value (so 0) to every conclusion, and a sequent is LP-valid iff it’s LP-satisfied by
every model.

Despite this difference, the resulting set theory is very like NSTm in some regards.
Crucially, the difference in the notion of satisfaction is only on the premise side; as a result,
sequents with empty premises are either valid on both notions of consequence or neither.
That is, the theorem-only fragments of the set theories are not affected by the difference
in the way validity is defined. It is only in the applications to arguments with premises
that the difference is revealed. It’s long been known that LP behaves very classically in
its theorem-only fragment, revealing its weakness only when considering arguments with
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premises. The approach I present here simply takes this classical aspect of an LP approach
and extends it to the full logic.

This is just one manifestation of what is in fact a broad and tight connection between
this type of nontransitive system on the one hand, and LP on the other. In addition to
sharing models, these kinds of systems can also be captured simultaneously in a single
proof-theoretic approach, as is explored in Ripley (2012), Hjortland (2013), and Barrio
et al. (2014). In particular, Barrio et al. (2014) claim that this tight connection shows that
there is not much benefit after all in any shift from LP to the kind of nontransitive systems
that I recommend and have explored here. I will have to leave this issue for another day.

Differences in comprehension. There are some further slight differences between this ap-
proach and the particular ones given in Restall (1992) and Priest (2006), however. These are
to do with the precise formulation of comprehension, and details around self-identity
claims. The version of comprehension I’ve used here guarantees full intersubstitutivity
between A(t) and t ∈ {x : A(x)} (in both NST and NSTm), but the version of comprehen-
sion used by Restall and Priest does not. Proof-theoretically, their version of comprehen-
sion amounts to using axioms [A(t) : t ∈ {x : A(x)}] and [t ∈ {x : A(x)} : A(t)] instead
of the rules CompL and CompR; model-theoretically, it amounts to the requirement that
|I (A(t)) − I (t ∈ {x : A(x)})| < 1, rather than the stricter requirement I’ve imposed.

As I mentioned in footnote 8, the stricter requirement I impose here can be seen as
a reflex of a certain kind of deflationism about sets, patterned on the kinds of approaches
taken to truth in Beall (2009) and Field (2008). (I don’t claim, of course, that this is the only
way to motivate the stricter requirement.) I set discussion of the relative ups and downs of
these approaches aside here.14

Differences in extensionality. Restall also defines identity out of ∈, rather than building it
into the logic itself, as I have here; and both Restall and Priest consider only pure set theo-
ries. But to the extent that they are comparable, the approach to identity enshrined in NST
and NSTm is again stronger. The LP-based approaches Restall and Priest consider require
only that I (t = t) ≥ 1

2 , rather than that it be 1, as NSTm does. This more or less amounts to
the proof-theoretic difference between NST’s =-drop rule and its weaker axiom relative.15

An anonymous referee suggests two other possible treatments of extensionality: first,
adding axiomatic sequents of the form [∀z(z ∈ t ≡ z ∈ u) : t = u]; or second, adding the
following rules:

[�, ∀z(z ∈ t ≡ z ∈ u) : �]

[�, t = u : �]

[� : ∀z(z ∈ t ≡ z ∈ u),�]

[� : t = u,�]

14 It is worth noting, however, that the more stringent form of comprehension I adopt here has its
costs as well. Foremost among these is that the only LP model meeting the strong comprehension
condition that is also a model of ZF is the trivial model: the one assigning value 1

2 to every
formula. (This has been proved by Morgan Thomas, who called the fact to my attention.) So the
strong comprehension condition blocks a certain kind of recapture result used, for example, in
Priest (2006, chap. 18). It is also incompatible with the extensions of LP considered in Omori
(2014).

15 =-drop does not on its own guarantee that I (t = t) = 1 on every model, but it gets close: it
guarantees that if there is a countermodel at all to an argument, then there is a countermodel
〈D, I 〉 to that argument such that I (t = t) = 1 for every t . This means that we can safely ignore
any models on which I (t = t) �= 1, as they will not affect the resulting consequence relation.



564 DAVID RIPLEY

(I ignore the extension to impure set theory here; either suggestion could easily be
adapted to such a setting.) While the issue deserves more discussion than I can give it here,
I suspect that in the end neither suggested route would prove very attractive, largely owing
to the presence of ∀ and ≡. Without a rule of cut, it is very difficult to exploit information
contained in complex formulas. To some extent, this is the reason for the weakness of the
axiomatic formulations of comprehension and extensionality considered earlier. I suspect
that these suggestions would run into similar difficulties, although the suggestions certainly
deserve exploration. It may also be worth noting that the axiomatic sequents envisioned in
the first suggestion are already provable from the formulation of extensionality I’ve adopted
here.

So there are some fiddly differences that require care; presentations of LP-based set the-
ories have tended to use slightly weaker principles of comprehension and self-identity than
the ones I’ve deployed in this paper. But there is no need for them to have adopted these
weaker requirements in order to avoid triviality, as I’ll show presently. The nontriviality
proof for NSTm in §4.2 is equally a nontriviality proof for an LP-style reformulation, with
the stronger versions of these principles. The proof works by arriving at a model, and the
model is just as much a model of the LP-style reformulation as it is of NST itself. While
I happen to think that NST gives a superior way to reason about and with sets, it’s certainly
open to the LP partisan to help themselves to this nontriviality proof as well, and thereby
achieve tighter formulations of comprehension and self-identity than they’ve had in the
past; indeed, I hope they do just that.

4.2. Nontriviality. In this section, I’ll show that NSTm is nontrivial. Since NST is
sound with respect to NSTm, it too must be nontrivial. In fact, I’ll show something stronger
than nontriviality: quantifier-free model-theoretic conservativity. Here’s what I mean by
that: start from a strong kleene model M for the fragment of our language that excludes
∈, S, and the set-abstract terms {x : A(x)}. (I’ll call this fragment the non-set vocabulary.)
The proof below will show how to expand that model to a model M ′ for the full vocabulary,
with the following feature: for any quantifier-free sentence A of the non-set vocabulary,
the value A receives in M ′ is the same as the value it receives in M . (The transition from
M to M ′ will add a bunch of things to the domain, to play the role of sets; this may
mess with quantified sentences in the non-set vocabulary, but it won’t affect quantifier-free
sentences.)

From this, nontriviality quickly follows. Moreover, this doesn’t just show that there is
some argument that’s not valid: it shows that a very wide range of arguments are not valid.
Indeed, any quantifier-free argument in the non-set vocabulary that is not already valid in
classical logic is also not valid in NSTm, and so not in NST.16

The proof will follow the strategy of Brady (1971) and similar approaches for compre-
hension, but will deal with extensionality in a new (and simpler) way. It works by defining a
starting point and a jump operation, and then showing that, if the jump operation is iterated
into the transfinite, it will eventually reach a fixed point: a point at which further jumps just
stay still. The starting point is determined quickly from M , and the eventual fixed point
will be M ′. Let’s begin!

16 This follows from what goes below, plus the fact that CL= is not only sound for strong kleene
models of the non-set vocabulary, but also complete. For proof of this, see Ripley (2012).
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4.2.1. Starting point. Begin with a model M = 〈D, I 〉 of the non-set vocabulary that
meets all the requirements in §§4 (except, of course, for the requirements specific to the
set vocabulary). I will assume that M contains a term for every member of its domain. The
first step is to add things to the domain to play the roles of sets. If the set abstract terms
themselves are not already in the domain, they will do fine; this is particularly convenient,
so I’ll go with it. (If the abstract terms are already in the domain, then just swap them
out for something else first.) Let Abs be {t : t is a set abstract term}. (Note that Abs is
a (informal ZFC) set of object-language terms, not itself a set abstract term of the object
language.)

Let M0 = 〈D′, I0〉, where D′ is D ∪ Abs, and I0 extends I to the full language as
follows:

• I0(S) = {〈t, 1〉 : t ∈ Abs} ∪ {〈t, 0〉 : t �∈ Abs},
• For t ∈ Abs, I0(t) = t ,
• For t ∈ Abs, u �∈ Abs, I0(=)(〈t, u〉) = 0,
• For distinct t, u ∈ Abs, I0(=)(〈t, u〉) = 1

2 ,
• For t �∈ Abs, I0(∈)(〈u, t〉) = 0,
• For t ∈ Abs, I0(∈)(〈u, t〉) = 1

2 ,
• For t ∈ Abs and R an nary non-set relation other than =,

I0(R)(〈a1, . . . , t, . . . an〉) = 1
2 .

In words, we ensure that S has the right extension; that each set abstract term names
itself; that = takes value 0 on claims of identity between sets and nonsets, and 1

2 on claims
of identity between sets named by distinct terms; that ∈ takes value 0 when its right relatum
is not a set abstract and 1

2 when it is; and that non-set predicates other than = always
take value 1

2 on set abstracts. (This last may seem odd, but recall that this is merely a
nontriviality proof; we are not in any way constructing an intended model here.)

M0 is a premodel; it may well not be (is probably not!) a model of the full vocabu-
lary, as it has taken no special precautions to meet the constraints for comprehension or
ExtS1. (It has taken care of S-drop, though.) This is the reason for the construction that
follows.

4.2.2. The construction. From M0, there is no further need to change the domain or
the extension of S; these are already as they will be in M ′. Nor is there any need to modify
the extension of any non-set predicate other than =; these too will stay put. All that will
need to be tweaked is the extension of the predicates ∈ and =. Even these, though, will
only need to change in certain ways. Nothing needs to be a member of a non-set, so we
only need to worry about cases of ∈ where the right relatum is a set abstract. And no set
needs to be identical to any non-set, so we only need to worry about cases of = where both
relata are set abstracts.

We change these extensions via a construction that builds a transfinite sequence of
premodels. For successors n+1, Mn+1 = 〈D′, In+1〉, where In+1 is related to In as follows
(note that D′ stays untouched):

• For all terms t , In+1(t) = In(t),
• For all predicates and relations R other than ∈ and =, In+1(R) = In(R),
• For t �∈ Abs, In+1(∈)(〈d, t〉) = In(∈)(〈d, t〉),
• For t �∈ Abs, In+1(=)(〈d, t〉) = In(=)(〈d, t〉),
• For t, u ∈ Abs, if there is a d ∈ D such that In(∈)(〈d, t〉) = 1 and In(∈)(〈d, u〉) =

0, then In+1(=)(〈t, u〉) = 0; otherwise, In+1(=)(〈t, u〉) = In(=)(〈t, u〉),
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• For t ∈ Abs such that t is the term {x : A(x)},
In+1(∈)(〈In+1(u), t〉) = In(A(u)).17

As is quick to verify, these clauses specify a unique premodel for each successor stage.
It remains only to specify the limit stages. We will need a tiny bit more machinery: the
so-called information order � on our three values. This is the partial order � such that
1
2 � 1; 1

2 � 0; and 0 and 1 are �-incomparable. Where V ⊆ {0, 1
2 , 1}, let max�(V ) be the

�-maximum value in V ; note that this is well-defined only when {1, 0} �⊆ V .
Where n is a limit ordinal, Mn = 〈D′, In〉, where In is related to its predecessors as

follows:

• For all terms t , In(t) = Im(t), for any m < n,
• For all predicates and relations R other than ∈ and =, In(R) = Im(R), for any

m < n,
• For t �∈ Abs, In(∈)(〈d, t〉) = Im(∈)(〈d, t〉), for any m < n,
• For t �∈ Abs, In(=)(〈d, t〉) = Im(=)(〈d, t〉), for any m < n,
• For t, u ∈ Abs, In(=)(〈t, u〉) = max�({Ii (=)(〈t, u〉)}i<n),
• For t ∈ Abs, In(∈)(〈u, t〉) = max�({Ii (∈)(〈u, t〉)}i<n).

The first four bullet points here are easy: these are the values that remain constant
through the entire construction, so we simply hold them constant at limit stages as well.
This constancy is required for In to be well-defined here, but it is obvious, since nothing
in the construction can change these values. The second two bullet points are a bit trickier:
they are only well-defined if the Ii s behave properly for i below n. In fact they do, but this
requires proof.

4.2.3. Increasingness and a fixed point. This proof is wrapped up in the proof of a
more general fact: increasingness.

LEMMA 4.1 (Increasingness). For any sentence A and any ordinals m, n such that
m ≤ n, Im(A) � In(A).

Proof. Proof is by induction on n. When m = n (including when n = 0), we’re all set;
so assume m < n. Now we have two inductive steps: one for n a successor, and the other
for n a limit. Each of these steps itself proceeds by induction on A’s formation. Here the
inductive steps (eg ∧, ¬, ∀) are straightforward and the base cases (for atomic A) are where
all the action is. As such, I’ll skip the inductive steps and focus on the base cases.

When A is atomic, there are four cases, depending on A: 1) A is u ∈ t , for t ∈ Abs, 2)
A is t = u, for distinct t, u ∈ Abs, 3) A is t = t , for t ∈ Abs, or 4) A is some other atomic
formula. In the third case, we’re all set; no formula of the form t = t ever takes a value
other than 1 in the course of the construction (since the stages are all premodels). In the
fourth case, we’re also all set: no atomic formula of type 4 changes its value anywhere in
the construction, as is easy to spot from §4.2.2. So we only need to worry about the first
two cases. In fact, we only need to distinguish between these cases when n is a successor;
for limit n the same reasoning works for both.

Suppose, then, that n is a successor k + 1. We know m ≤ k, so by the (main) in-
ductive hypothesis, Im(A) � Ik(A). It remains only to show, then, that Ik(A) � In(A).

17 This is where it becomes important that M contained a term for every member of its domain;
without such an assumption, this clause would not fully characterize In+1(∈) (although a more
complicated clause could be rigged up to do the trick).
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If Ik(A) = 1
2 , we’re done. So suppose Ik(A) = 1 or 0. Now we case on A, and show that

In(A) = Ik(A):

Case 1. A is u ∈ t , where t is the term {x : B(x)}. Since Ik �= 1
2 , it follows that there is an

i < k such that Ik(A) = Ii (B(u)). By the inductive hypothesis, Ik(B(u)) = Ii (B(u)),
and by the construction, In(A) = Ik(B(u)), so In(A) = Ik(A).

Case 2. A is t = u, for distinct t, u ∈ Abs. There is nothing in the construction that could
allow Ik(A) to be 1, so Ik(A) must be 0. This can only happen, though, when there is
some i < k and some d ∈ D′ such that Ii (∈)(〈d, t〉) = 1 and Ii (∈)(〈d, u〉) = 0, or vice
versa. So by the inductive hypothesis, Ik(∈)(〈d, t〉) = 1 and Ik(∈)(〈d, u〉) = 0, or vice
versa. But then by the construction, In(=)(〈t, u〉) = 0, and so In(A) = 0.

So much for the successor case. Now suppose n is a limit ordinal, and that either A is u ∈ t ,
for t ∈ Abs, or else A is t = u, for t, u ∈ Abs. By the inductive hypothesis, there cannot be
j ≤ k < n such that I j (A) �� Ik(A). As such, max�({Ii (A)}i<n) is well-defined, so by the
construction In(A) = max�({Ii (A)}i<n). But Im(A) � max�({Ii (A)}i<n), so Im(A) �
In(A). �

So as we climb the transfinite construction, formulas might move from value 1
2 to either

value 1 or value 0, but once a formula is at either 1 or 0, it never moves again, no matter
how high we climb. Given this, and the fact that there are only so many formulas in the
language, we have:

COROLLARY 4.2 (Fixed point). There is some ordinal n such that Mn = Mn+1.

Proof. If for every n, Mn �= Mn+1, then, since the Mns differ only in their I component,
it follows that for every n there is some formula A such that In(A) �= In+1(A). Moreover,
this must be a distinct A for each n; since In(A) � In+1(A), In+1(A) must be 1 or 0, and
so Im(A) must equal In+1(A) for all m ≥ n + 1. But there are not enough formulas to have
a distinct A for every ordinal n. Contradiction. �

4.2.4. Nontriviality. Let M ′ = 〈D′, I ′〉 be the fixed point reached by the construction.
That is, M ′ = Mn for some n such that Mn = Mn+1. It remains to be shown that M ′ is not
merely a premodel, but is a model as well.

LEMMA 4.3. M ′ is a model.

Proof. There are three conditions to check.

• First, that I ′(t ∈ {x : A(x)}) = I ′(A(t)). We know that In+1(t ∈ {x : A(x)}) =
In(A(t)), for any n. Then it is immediate that the condition is met, since there is
some n such that I ′ = In = In+1.

• Second, that I ′(S({x : A(x)})) = 1. We know that I0(S({x : A(x)})) = 1, and then
it follows by increasingness that the condition is met.

• Third, that if I ′(St) > 0, I ′(Su) > 0, and I ′(t = u) = 0, then there is some
d ∈ D′ such that either I ′(∈)(〈d, I ′(t)〉) = 1 and I ′(∈)(〈d, I ′(u)〉) = 0, or else
I ′(∈)(〈d, I ′(t)〉) = 0 and I ′(∈)(〈d, I ′(u)〉) = 1.

We know that I0(Sv) = 0 unless v ∈ Abs; it follows by increasingness that
I ′(Sv) = 0 unless v ∈ Abs. So we only need to worry about the case where
t, u ∈ Abs. In this case, I ′(t) = t and I ′(u) = u.

If In+1(t = u) = 0, then t is distinct from u, and there is some k < n + 1
and d ∈ D′ such that Ik(∈)(〈d, t〉) = 1 and Ik(∈)(〈d, u〉) = 0, or vice versa.



568 DAVID RIPLEY

(Otherwise, In+1(t = u) would still be 1
2 , as I0(t = u) is.) By increasingness,

In(∈)(〈d, t〉) = 1 and In(∈)(〈d, u〉) = 0, or vice versa. But since there is some n
such that I ′ = In = In+1, it follows that the condition is met. �

Moreover, for every quantifier-free A in the non-set vocabulary, I ′(A) = I (A), as is
easy to check. So we have quantifier-free model-theoretic conservativity:

COROLLARY 4.4 (Quantifier-free conservativity). Every model for the non-set language
can be extended to a model for the full language such that the two models do not differ on
the values they assign to any quantifier-free formula of the non-set language.

From this, nontriviality is immediate:

COROLLARY 4.5 (Nontriviality). NSTm and NST are nontrivial.

Proof. It’s easy to build a non-set countermodel M to the argument from Pa to Qb. But
Pa and Qb have no quantifiers, so M can be extended to a model M ′ of the full language
such that M ′(Pa) = M(Pa) and M ′(Qb) = M(Qb). Since M was a countermodel to the
argument, so too will M ′ be. Thus, NSTm is nontrivial. Since NSTm is at least as strong
as NST, NST too is nontrivial. �

4.3. Discussion. It’s important to note that the model M ′ constructed in this nontriv-
iality proof is not in any way supposed to play the role of an intended extension of M ; it
does not capture the actual structure of naive sets. (Nor should we expect it to, as it is itself
a construction in a sophisticated set theory.) For example, in an M ′ produced by the above
construction, the terms {x : Px ∨ Qx} and {x : Qx ∨ Px} will denote different members
of the domain, since each denotes itself and they are, after all, distinct terms.

Presumably, though, the set of all x such that Px ∨ Qx is the same set as the set of all x
such that Qx ∨ Px . Indeed, NST allows for this identity to be derived. Don’t think that the
model produced by the nontriviality proof has more importance than it does! Its purpose
is only to show that NST is nontrivial (if classical ZFC is). Similar comments apply to
{x : A(x)} and {y : A(y)}; although these terms denote distinct members of the domain of
M ′, the sentence {x : A(x)} = {y : A(y)} remains a theorem of NST.

However, theorem-strength identity is only so strong. It follows from the considerations
in §3.2 that the claim that the weber set is identical to the empty set is also a theorem of
NST; but still these two sets behave differently. (For example, it’s a theorem that x is a
member of the weber set; but it’s definitely not a theorem that x is a member of the empty
set!)

We might want a stronger connection between {x : Px ∨ Qx} and {x : Qx ∨ Px} than
this. Fortunately, this can be achieved by strengthening NST slightly. Let R be some equiv-
alence relation on set abstract terms such that {x : A(x)}R{y : B(y)} only if I (A(a)) =
I (B(a)) on every premodel.18

Given such an R, we can now strengthen NST to NSTR by adding the following rule,
for set abstract terms t, u such that t Ru:

[�, t = u : �]
R-=-drop:

[� : �]

18 This condition amounts to equivalence between A(a) and B(a) in the logic sometimes called S3
and sometimes called first-degree RM.
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NSTR can be proved nontrivial in the same way as NST, mutatis mutandis; in setting up
the domain for the construction, rather than including the set abstract terms themselves, we
just need to include their equivalence classes under R. The constraint on R ensures that the
construction remains well-defined; the proof goes through just as before, mutatis mutandis.

For any R meeting the constraint, if t Ru, then NST already derives [ : t = u]. But
recall that being able to drop a formula from the premises of an argument is a stronger
condition to meet than simply being able to conclude the formula as a theorem. It amounts
to concluding it as a theorem and then cutting on it. As such, NSTR imposes a stronger
connection between R-related set abstract terms than NST does. Given the = L rules, being
able to drop t = u yields full intersubstitutivity between t and u: a very strong connection
indeed.

If we go down this path, I think one natural candidate for such an R is the strongest
possible choice. On this choice, the constraint on R is strengthened to a biconditional:
{x : A(x)}R{y : B(y)} if and only if I (A(a)) = I (B(a)) on every premodel. This choice
of R yields full intersubstitutivity between {x : Px ∨ Qx} and {x : Qx ∨ Px}, as well as
between {x : A(x)} and {y : A(y)}, and between many more pairs besides.

Perhaps there is good reason to choose one R rather than another, or to avoid the issue
altogether and stick with the original NST. For now, I’m happy just to put them on the
table: they are all nontrivial.

An anonymous referee suggests here an additional, stronger, desideratum: “that, when-
ever the ground model for the non-set language verifies the coextensionality of φ(x), and
ψ(x), the final model assigns 1 to the identity {x : φ(x)} = {x : ψ(x)}”. I do not know
whether this is achievable in the present setting, and it would indeed be nice to know! Even
with NSTR in play, there is no connection this tight being enforced.19

§5. Conclusion. This paper has extended the nontransitive approach to paradoxes
explored for vagueness in Cobreros et al. (2012) and Ripley (2013b) and for truth in
Ripley (2013a), Ripley (2012), and Cobreros et al. (2013) to the paradoxes engendered
by a naive set theory: a set theory characterized by the two principles of comprehension
and extensionality. The key to such an extension is in the use of rule-based formulations of
these principles, rather than sentence-based formulations.

The resulting set theory, in its theorem fragment, resembles the LP-based set theories
explored in Restall (1992) and Priest (2006), but with a stronger form of comprehension,
and stronger self-identity. The full approach, however, is classical-ish as well as LP-ish, as
it validates every classically-valid argument.

Despite this, it remains nontrivial, as has been shown via a modification of the technique
of Brady (1971). The main innovation in this proof is in the treatment of extensionality,
which in the present context, unlike in many others, is no harder to work with than com-
prehension.
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19 I believe, but am not certain, that the referee’s desideratum can be achieved for restricted φ and
ψ—say, without = or quantifiers—without too much trouble, by modifying the specification of
M0.
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