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CHAPTER 28

T T T R T P

NON-CLASSICAL THEORIES
OF TRUTH

D T T T T T T TP P T TS

Jc BEALL AND DAVID RIPLEY

THis chapter attempts to give a brief overview of non-classical(-logic) theories of truth.
Due to space limitations, we follow a victory-through-sacrifice policy: sacrifice details
in exchange for clarity of big-picture ideas. This policy results in our giving all too brief
treatment to certain topics that have dominated discussion in the non-classical-logic
area of truth studies. (This is particularly so of the “suitable conditional” issue: section
28.4.3.) Still, we present enough representative ideas that one may fruitfully turn
from this chapter to the more detailed cited works for further study. Throughout—
again, due to space—we focus only on the most central motivation for standard
non-classical-logic-based truth theories: namely, truth-theoretic paradox (specifi-
cally, due to space, the liar paradox).

Our discussion is structured as follows. We first set some terminology concerning
theories and logics; this terminology allows us to frame the discussion in a broad-but-
clean fashion. (On the logic side, we present a very basic sequent system for truth and
negation—and nothing more.) We then present a stripped-down version of the liar
paradox. The paradox, as we set it up, turns on four basic rules (not including the
truth rules; it’s the job of our target non-classical truth theories to preserve these in
unrestricted form): two rules governing negation’s behavior, and two rules governing
the “structure” of the validity relation itself. These four rules serve as choice points for
the four basic theoretical directions that we sketch. While details, as warned above,
are sacrificed for space and big-picture clarity, we hope that the discussion none-
theless charts the main directions of non-classical response to basic truth-theoretic
paradox.
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740 Jc BEALL AND DAVID RIPLEY

Since we'll be considering a variety of logics in this chapter, it will help to first have some
general tools to work with. We'll adapt, and slightly broaden, the framework of Resta]]
(2013) to this end. For purposes of framing our discussion, we take a theory to be 3
record of both what the given theorist—one who endorses the given theory—accepts
and what she rejects (with respect to the given phenomena). Hence, we shall take 5
theory 7 to be a pair (A, R), where A and R contain what an endorser of 7 accepts
and rejects, respectively.

For some kinds of theory, we might be able to figure out what must be in R by looking
at A (e.g. each negation in .4 might correspond 1-1to an entry in R ), or vice versa. This
is the usual situation with classical theories and classical logic: a classical theorist rejects
something iff she accepts its negation. We shall look at two theories that have this feature
(see sections 28.5.1 and 28.5.2). On the other hand, some theories may lack this feature: it
might be that neither .4 nor R provides sufficient information to derive the other (e.g.
negation might fail to track rejection). We shall look at two theories that have this fea-
ture (see sections 28.4.1and 28.4.2).

Each sort of theory we discuss comes with a particular logical approach. We
take logics, in “multiple-conclusions” guise, to constrain theories as follows, again
herein agreeing with Restall (2005). The argument from premises I" to conclusions
A is valid (we write " - A) iff it’s out of logical bounds to adopt a theory <A,R> such
thatI"c 4 and A c R. In short: a valid argument rules out certain theories, notably,
those theories that accept all of the (valid) argument’s premises and reject all of its
conclusions.!

Finally, the logics that we discuss all exhibit two familiar features:

o reflexivity: AF A, for any claim A.
+ monotonicity: letl' cT"and Ac A" IfI'- A, thenT"+ A",

In terms of the interplay with theories, reflexivity tells us that no (logically accept-
able) theory (A, R) involves overlap: A NR =. In other words, logic, being ref-
lexive, forbids theorists from both accepting and rejecting one and the same thing.”
For monotonicity, define a 7-expanded theoryto be any theory 7’ =(A’, R’) achieved
via superset: 4 < A’ and R ¢ R’. Then monotonicity tells us that if (the given) logic
rules out a theory 7 , it rules out every 7-expanded theory too. In other words, if logic

! That one of logic’s foundational roles in rational inquiry—particularly rational change in view (as
Harman famously puts it) or especially theory expansion—is to proscribe certain theories (or constrain
the space of “acceptable” ones) is not only a common idea, but also a very traditional one. Everything
we say is compatible with the traditional proscriptive role of logic. We leave open whether logic has any
interesting prescriptive role.

2 For an approach to paradox that does without this constraint, see Ripley (2013).
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NON-CLASSICAL THEORIES OF TRUTH 741

1 .l’le
L on't help.3

s out accepting I" while rejecting A, then adding more acceptances or rejections

28.2 REASONING WITH TRUTH

‘hroughout the chapter, we use T as our truth predicate, and take (A) to be a singular
yorm referring to the sentence A. We simply assume that each sentence A has some such
¢ (A), without fussing about how (A) comes to refer to A; it can be a quote name, a
per name, 2 definite description, a Godel code, or whatever.
" There are various familiar principles or rules relating A to T(A); we consider three
-andidates: transparency, the T-schema, and capture and release.

28.2.1 Transparency

Transparency is the principle that A and T(A) are intersubstitutable with each other
] non-opaque contexts. Ignoring opaque contexts, then, transparency amounts to
rywhere-intersubstitutability. This requires not only that A be equivalent to T(A),
but also that A A (—B D T(C)) be equivalent to T(T{A)) A T(—~T(B) > C), and so on. In
rt, Ts can be added and subtracted willy-nilly, to whole formulas or subformulas. Let
formulas that can be obtained from each other by adding and subtracting Ts be called
Teyariants.
" The notion of equivalence in play can be specified in a few ways. As a constraint on
theories, the most natural understanding is this: a theory (A, R) obeys transparency
or all A, if A € A then every T-variant of A is in A as well; and if A € R then every
T-variant of A is in R as well. This results in A and all its T-variants being equivalent in
argument; swapping formulas for their T-variants never makes a valid argument invalid

b

orvice versa.

28.2.2 The T-schema

dhe T-schema is the schema A=_T(A), where =_is some biconditional or other—
cally, in the first instance, a material biconditional (built from negation, dis-
ction, and conjunction in the usual way). Tarski (1944) offers this schema—in
Material-biconditional form—as a necessary condition on theories of truth: an
#dequate theory, he supposes, must have every instance of the T-schema as a theorem.

3
’ F(.)r convenience, we speak of accepting (set) I” and rejecting (set) A , whereby—note well—we mean
“pling everything in T and rejecting everything in A , respectively.




742 Jc BEALL AND DAVID RIPLEY

On our theory-directed interpretation of theoremhood, there are two Ways to under.
stand this: that a theory must accept all instances of the T-schema, or that it Must nog
reject any instances of the T-schema. For our purposes, we don't spend too much, time
looking at the T-schema, as doing so requires thinking reasonably hard about the Status.
of biconditionals, which we are mostly avoiding here. (See section 28.4.3 for as cloge as
we come to this.) '

28.2.3 Capture and release

Capture and release are argument forms or “rules of inference” or “extra-logical
entailments” (entailments secured by a theory, rather than by logical vocabulay
alone). Capture is the rule going from A to T(A), the idea being that the truth predi-
cate “captures” the “content” of A, and release is the converse, the rule from T(A)
to A. On our interpretation, capture rules out any theory that accepts A but rejects
T(A), and release rules out any theory that accepts T(A) but rejects A. Given that
logic is reflexive (see above), capture and release follow from transparency. (And if
logic enjoys a “deduction theorem,” the T-schema follows from capture and release;
however, some of the logics discussed below do not enjoy a deduction theorem. See
sections 28.4.1-28.4.3.)

Clearly, transparency, the T-schema, and capture and release have something in
common, but they spell it out in different ways. The relations between them are some-
times non-obvious, and always depend on particular features of the background logic.
But the core of all three ideas is that A and T(A) can stand in for each other in various es-
sential ways. In the non-classical theories sketched below, this core idea remains fixed: at
the very least, truth obeys capture and release (if not also being transparent).

28.3 PARADOX AND CLASSICAL LOoGIC

In many languages (all natural languages and some formal ones), a sentence can con-
tain a singular term referring to that very sentence itself. For example, the sentence
“This very sentence has twenty-three words” includes the singular term “this very
sentence’; given a certain context, this term can refer to the sentence itself, rendering
it false.

Our main concern in this section is a liar sentence A which, one way or another, justis
—T(A). In other words, 4 is a sentence that says of itself (only) that it is not true. We can
produce such a thing in any number of ways; we don't particularly worry about how the
trick is pulled here.* The liar causes its trouble by, in some sense, being able to stand in

¢ For concreteness, we can take A to be the sentence “The quoted sentence in footnote 4 is not true.”
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NON-CLASSICAL THEORIES OF TRUTH 743

for its own negation. (The precise sense of standing in depends on which properties are
taken to govern the truth predicate. We shall, for space reasons, pass over exact details.)

Reasoning classically, we can see that this causes trouble as follows: we cannot reject
both the liar and its negation. But since it can stand in for its own negation, this means
that we cannot reject both the liar and itself; in other words, we cannot reject it. On the
other hand, we cannot accept both the liar and its negation. Since it can stand in for its
own negation, this means we cannot accept both the liar and itself; in other words, we
cannot accept it. Trouble seems to be afoot.

The classical principles invoked in the foregoing liar-paradoxical reasoning may be
summarized as follows: 1) for any sentence, we cannot reject it together with its negation;
2) for any sentence, we cannot accept it together with its negation; 3) if we cannot reject
a sentence together with itself, we cannot reject the sentence; 4) if we cannot accept a
sentence together with itself, we cannot accept the sentence; and 5) if we cannot accept a
sentence and cannot reject it, trouble is afoot.

28.3.1 The liar in sequent form

We proceed to make the given liar-paradoxical argument precise via a Gentzen-style
sequent calculus. For our purposes, we needn’t worry about conjunction, disjunc-
tion, a conditional, quantifiers, or any of that; the rules governing negation, along
with the so-called structural rules, suffice to cause trouble. (We thus won’t con-
sider approaches, like supervaluational or subvaluational approaches, that hinge
on fiddling with the behavior of conjunction and disjunction. See McGee 1991; van
Fraassen 1968;1970.)

Our sequents are things of the form I' A, where I and A are finite “multisets” of
formulas. A multiset is just like a set, except things can be members of it multiple times,
and it matters how many times something is a member (Meyer and McRobbie 1982a;
1982b). Thus, the multiset [A, A] is different from the multiset [A], even though the set
{A, A} is the same set as {A}. Multisets do not pay attention to order; thus, the multiset
[A, B]is the same multiset as[B, A]. In an argument with multiple premises, the prem-
ises are (as usual) interpreted conjunctively; multiple conclusions are dually interpreted
disjunctively.

In our simple Gentzen system (our logic), we take as axioms all sequents of the form
[,AF A,A’ and proceed to add three kinds of rule: contraction rules, a cut rule, and
negation rules. The first two kinds are structural: they don't involve any particular vocab-
ulary. The last kind is operational. it tells us what rules negation obeys.

5 We set up our axioms with side premises I" and side conclusions A so that all the logics we
consider will be monotonic: adding premises or conclusions can never make a valid argument invalid.
Monotonicity does not seem to be implicated in any of the paradoxes of truth, so we hold it innocent
here. (But note that Grisin 1982 finds trouble for monotonicity in a particular naive set theory.)
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First, the contraction rules:

ContractionL: DAIRS ContractionR: M
IAFA THAA

These tell us that whenever we have multiple occurrences of a premise or a concly.
sion in a valid argument, the argument remains valid with just a single occurrence
of that premise or conclusion. They preserve classical validity, and indeed play a key
role in some sequent calculi for classical logic. In terms of theories, they tell us that
accepting or rejecting something twice is no stronger than accepting or rejecting
it once.

In addition to the two contraction rules (both structural rules), our liar-paradoxica]
reasoning also includes the following structural rule:

I'~AA T ARA

Cut:
T,T'EAA

Cut encodes a generalized form of the transitivity of our consequence relation: if B
entails A and A entails C, then the cut rule guarantees that B entails C directly; the
formula A can be cut out, and argument may proceed directly from B to C. Cut also
preserves classical validity in the usual presentations. Unlike the contraction rules,
however, the rule of cut is very frequently eliminable: it does not expand the stock of
provable sequents. It merely provides shortcuts, allowing smaller derivations of some
of the very same sequents. In terms of theories, cut is an extensibility condition: it tells
us that if some commitments rule out rejecting A, and other commitments rule out
accepting it, then combining all of those commitments is ruled out. A theory doesn't
have to actually take a stand on A; cut requires each theory to at least leave open some
stand on A.

Finally, our liar-paradoxical argument depends on operational rules, namely, rules
governing the operator negation. We use the usual classical negation rules:

THAA . DAFA
T T.DAFA 0 TF=AA

These rules encode the flip-flop behavior of classical negation. From the axiom A 4,
they allow us to prove pivotal sequents:

o exclusion: A, —AF
o exhaustion: - A,—A

Exclusion, derived via —L and reflexivity, tells us that A and its negation may not be ac-
cepted together. The second, derived via —R and reflexivity, tells us that A and its nega-
tion may not be rejected together.

Po Y T - S - R )
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NON-CLASSICAL THEORIES OF TRUTH 745

The foregoing axioms and rules are part of many usual sequent presentations of
classical logic; they are enough to reconstruct the above argument for liar-paradoxical
trouble, at least given rules governing truth (and the existence of a liar sentence, which
we assume). For present purposes, we shall work with capture and release as our rules
governing truth, even though the argument can be equally reconstructed with transpar-
ency or (given rules for = , for some biconditional or other) the T-schema. To accom-
modate capture and release, we take as additional axioms every instance of the following
two schemas:

o capture: T, Al T(A)A
o release: ', T(A)F A,A

With all of this in hand, the liar-paradoxical argument may be run as follows.

WIS L AT
ContractionR: P I—M Contraction L;w
pHA Akgq
Cut:
phq

(For the contraction steps, recall that A just is =T(A), so we genuinely are contracting
two occurrences of the same sentence.) The resulting sequent p - g is absurd: p and g
are arbitrary, so a logic that delivers p g is one according to which anything (what-
soever) entails anything else (whatsoever). This, for our purposes, is completely un-
acceptable, and so something has to go.® If we take the classical principles appealed
to in this argument to be non-negotiable, then it’s clear where the adjustment has to
be: capture and release (and transparency and the T-schema, as they’re implicated in
related versions of this argument) must be given up, and so must any theory that entails
them. A theory that maintains capture and release, then, must be backed by a logic that
does not accept all of =R, =L, contraction, and cut. As usual, relaxing logical princi-
ples opens space for new theories, theories that would be ruled out if stronger logical
principles were held fast.

Here, we discuss four logical optionsin turn:1) gettingrid of —R; 2) getting rid of —L;
3) getting rid of cut; and 4) getting rid of contraction. These four logical options open
up different sorts of space for a theory of truth to occupy. As part of our discus-
sion, we also briefly sketch the sort of theory that can live in each kind of logical
environment.

6 Some accept the conclusion (Azzouni 2006; Kabay 2010), but we won't rebut their arguments here.
Our goal is to sketch some of the motivations for non-classical theories, and one such motivation is to
avoid this trivialist conclusion.
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28.4 OPERATIONAL APPROACHES

Operational approaches are ones that target a particular operator (or class of Operators)
as the source of liar-paradoxical trouble. In our sample liar derivation above (see section
28.3.1), the only operator involved is negation. The directions of operational approacheg
that we shall present are those that target negation as the source of trouble—at least inj-
tially. (For the potential of additional trouble arising from Curry’s paradox, see section

28.4.3.)

28.4.1 Getting rid of —R: paracomplete solutions

Getting rid of —R amounts to rejecting exhaustion; logical approaches that take this
route are known as paracomplete. Such logics allow for paracomplete theories, where a
theory 7 = (A, R) is paracomplete just if both B and —B are in R for some (but not all)
sentence(s) B. With respect to the liar, paracomplete theorists reject A but also reject —A.

28.41.1 Excluded middle

Generally, provided that disjunction v exhibits standard behavior, paracomplete
theorists reject excluded middle in the form

BFAV—-A

This is not to say that paracomplete theorists reject all instances of A v —A. Such
theorists might think—for extra-logical, certain theory-specific reasons—that, for
some specific fragment of the language (e.g. T-free fragment, physics, some such), all
instances of A v —A hold (Field 2008). But they reject that A v —A is logically true: that
it holds via logic alone.

The failure of excluded middle affects the options for T-biconditionals in such
theories. This topic is (briefly) discussed below (see section 28.4.3).

28.4.2 Gettingrid of —L: paraconsistent solutions

Getting rid of —L amounts to rejecting exclusion; logical approaches that take this
route are known as paraconsistent. Such logics allow for paraconsistent theories, where a
theory T = (A, R} is paraconsistent just if both Band —B are in A for some (but not all)
sentence(s) B.

7 In this chapter we ignore—with reluctance! —the distinction drawn in the literature between
“paraconsistency” on the one hand and “dialetheism” or “glut theories” on the other. While this
distinction is important much of the time, for present purposes it would simply distract.
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NON-CLASSICAL THEORIES OF TRUTH 747

28.4.21 Explosion

Generally, provided that conjunction A exhibits standard behavior, paraconsistent
theorists reject explosion in the form

AA—AFB

This is not to say that paraconsistent theorists accept all instances of A A—A. Such
theorists might think—for extra-logical, certain theory-specific reasons—that, for
some specific fragment of the language (e.g. T-free fragment, physics, some such), all
instances of A A —A fail to hold (Beall 2009). But they reject that A A —A islogically un-
true: that it fails via logic alone.

The failure of explosion affects the options for T-biconditionals in such theories—a
topic to which we now very briefly turn.

28.4.3 Suitable conditionals and Curry’s paradox

Our given paracomplete and paraconsistent theories wind up with a non-classical
material conditional, where a material conditional A © Bis defined as—A v B.

 Paracomplete: ¥ A D A.
o Paraconsistent: A,A > B ¥ B.

Hence, in either case, the resulting material conditional is often thought to be inade-
quate for purposes of underwriting the T-biconditionals.® In the paracomplete case,
the given conditional detaches (i.e. validates modus ponens) but fails to support all
instances of the given (material) T-schema: T(A) D A and its converse can fail. In the
paraconsistent case, all instances of the given (material) T-schema hold; however, the
given conditional fails to detach.

8 One easy way to establish such “inadequacies” is via a common (sound and complete)
“semantics” for common such logics—e.g. strong Kleene or K3 (Kleene 1952; Beall and van Fraassen
2003) and LP (Asenjo 1966; Priest 1979; Beall and van Fraassen 2003). In short: let V contain all
(total) maps ¥ from sentences into{1,.5,0} such that v(—A) =1-v(A) , v(A A B) = min{v(A),v(B)},
and v(A v B) = max{v(A),v(B)} . In the paracomplete K3 case, we say thatv € V satisfies A just if
v(A) =1, and dissatisfies A otherwise. In the LP case, we say thatv € V satisfies A just if v(A) € {1,.5}, and
dissatisfies A otherwise. In both cases, we say that v € V satisfies a set I" iff v satisfies each member of I,
andv eV dissatisfies I iff v dissatisfies all elements of I'. Finally, we may define, for each of the given
logics L, “semantic consequence” -, in the foregoing terms: T' -, A iff theres nov € V that satisfies I" but
dissatisfies A. Where L is taken to be K3, with (dis-)satisfaction defined as above, I, is paracomplete (as
an easy exercise shows); and, dually, I, is paraconsistent where L is taken to be LP, with (dis-)satisfaction
defined as above, (NB: we have actually given what we have elsewhere called K3" and LP”, respectively,
in order to maintain uniformity with our multiple-conclusion-based discussion in sequent-calculus
terms. See Beall (2011; 2013). Strictly speaking, K3 and LP are the single(ton)-conclusion limits of K3 and
LP", so understood.)
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——

As a result of these apparent deficiencies, much of the work in paraconsistent apq
paracomplete responses to paradox has focused on supplementing such theories wit,
a suitable conditional, one that both detaches and validates all T-biconditionals (Beall
2009; Field 2008; Priest 2006; Brady 2006). But the task is difficult. What makes the tag}c
particularly difficult is Curry’s paradox (Meyer et al. 1979), which involves (conditional)
sentences that say of themselves (only) that if they are true then absurdity is true (e.g.
that everything is true).” In the material-conditional case, Curry’s paradox is nothing
more than a disjunctive version of the liar (e.g. “Either I'm not true or absurdity is true”),
which is already treated by standard paraconsistent or paracomplete approaches to the
liar. But when a new “suitable conditional” has been added to the mix, Curry’s paradox s
a distinct—and very, very difficult—problem (Myhill 1975). In fact, Curry’s paradox has
often been regarded as the hardest obstacle in the path of “para-” solutions to paradox
(Beall et al. 2006; Field 2008; Priest 2006).1°

For space reasons, we need omit discussion of the various avenues toward adding
detachable, but Curry-paradoxical-safe, T-biconditionals to paracomplete and para-
consistent theories (Beall 2009; Brady 2006; Field 2008; Priest 2006). But we should
mention a relatively unexplored alternative: simply accept the deficiencies of the ma-
terial T-biconditionals, but respond to them in some other fashion. One approach is to
devise a suitable non-monotonic logic, and try to “capture back” as much of the other-
wise lost features of the T-biconditionals (Goodship 1996; Priest 1991). Another route
is to move to a multiple-conclusion logic and an appropriate philosophy thereof (e.g.
one that sees the work of “detachment” not in a detachable conditional but instead in
extralogical principles that ground the inference from certain premises to certain
conclusions) (Beall 2013; 2015). The viability of such approaches remains open.

28.5 SUBSTRUCTURAL APPROACHES

The above approaches work at the level of operational rules, in particular the rules gov-
erning negation. But classical negation is useful for many purposes. For example, as
weve seen above, paracompletists and paraconsistentists alike must reject the usual

9 Worth noting here is that in popular paracomplete logics such as strong Kleene, the material
conditional fails to enjoy a deduction theorem. Example: A - A but ¥ A o A. On the other (dual) side,
with the corresponding (dual) paraconsistent logic LP, the other direction of the deduction theorem fails:
F (A A(A D B)) D Bbut A A(A D B) ¥ B. In general, for Curry-paradoxical reasons, theories cannot have
a deduction theorem for a detachable conditional—at least if the underlying structural rules contain
both transitivity and contraction. (See 28.5 for more discussion.)

10 While we cannot discuss it, we should mention too that Curry’s paradox equally confronts

“property theories” that purport to accommodate properties corresponding to each meani ngful

predicate—in short, each meaningful predicate picks out a property exemplified by all and only the
objects of which the predicate is true. Having this sort of theory confronts Curry’s paradox in the
(Russell-like) form of the property exemplified by all and only those things such that if they exemplify
themselves, then absurdity follows.
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understanding of the relations between acceptance, rejection, and negation: paracomplete
theorists reject some A without thereby accepting —A, while paraconsistent theorists
accept some —A without thereby rejecting A, and so on. In addition, the paracompletist
loses the law of excluded middle, and the paraconsistentist loses explosion, both fa-
miliar and useful principles of inference. Finally, the loss of excluded middle or explosion
removes much of the conditional flavor of the classical material conditional. For these
reasons, an approach that allows us to proceed without losing so much might be thought
superior over the para- accounts.

Here, we briefly outline two substructural approaches. These work at the level of the
structural rules, so they allow for the maintenance of both —L and —R, restoring much
of the usefulness of classical negation and the classical material conditional. But they too
are not without costs, as we note below.

28.5.1 Gettingrid of cut: nontransitive solutions

The first substructural approach we consider retains the rules of contraction and
dispenses with the rule of cut; this results in a nontransitive logic. On an approach like
this, both of the sequents p - A and A+ q are derivable, but without the rule of cut there
is no way to derive p I g, so the disaster is averted at the very last step.

Nontransitive logics have been advanced in Weir (2005) and Ripley (2013) for hand-
ling truth-theoretic paradoxes. They block the problematic derivation, and they do so in
a way that allows them to preserve classical operational rules.! This allows the resulting
logical systems to behave quite naturally in a number of ways.

By preserving the classical flip-flop behavior of negation, the nontransitive theorist
also preserves the conditional flavor of the material conditional. Nontransitive logics,
like the logic ST discussed in Ripley (2013) and Cobreros et al. (2014), can maintain the
trinity which the para- approaches, in one way or another, abandon:

+ D-identity: FAD A
s Dmodusponens: A,ADBFB
¢ deduction theorem: I, AF B,Aif '+ A> B, A.

Approaches that focus exclusively on operational rules not only must fail some of these
for the material conditional, but in fact must fail some of these for any conditional, due
to Curry paradox. (Proof: exercise, but use the above rules and standard structural rules,
plus release and capture.) This means that nontransitive logics can make do with mate-
rial conditionals and, in fact, material T-biconditionals: there is no need either to add

U The system presented in Weir (2005) preserves many, but not all, classical operational rules; the
system presented in Ripley (2013) preserves them all. As a result, we focus in this section on the latter
system. Note that Weir’s approach rejects the validity of p - Aand A - ¢ ; it works in a related but
distinct way.
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a separate “suitable conditional” or to learn to live with oddly behaved conditiona]s_
unlike in the paracomplete and paraconsistent theories, which, as mentioned in sectigp
28.4.3, must take one of these routes.

There is a reason why nontransitive logics can behave so classically. Recall that
cut, unlike contraction, is eliminable in many presentations of (truth-free) classica]
logic; this means that it plays no essential role in any derivation. Anything that can be
derived with it can also be derived without it. As our above liar-based argument shows,
this is no longer true when the behavior of truth is accounted for; with capture ang
release on board, cut makes a genuine difference. However, it only makes a difference
to derivations in which capture and release are involved; as a result, one can preserye
every classically-valid argument in a nontransitive logic. As is shown in Ripley (2013),
one can even ensure that all of these arguments extend to cover the full, truth—involving,
language.

There is thus a clear sense in which such a nontransitive system is not non-classical: it
validates every classically valid argument, in the full vocabulary of the language, in-
cluding when a truth predicate is present. Nonetheless, the loss of transitivity is at least
unfamiliar, and the motivations for adopting such a logic are very similar to many non-
classicists’ motivations; there is an equally clear sense in which such an approach is non-
classical. We won't bother with the terminological question here.

As we sketched above, the rule of cut amounts to the following constraint on
theories: every theory must leave open either accepting A or rejecting it. Ripley
takes A to provide a counterexample to this principle and thus to transitivity.
Deriving - A thus tells us that it's incoherent to reject A, and deriving A that it’s in-
coherent to accept it. The nontransitivist of this stripe must neither accept nor reject
A. This is the theory offered of A’s paradoxicality: it cannot be accepted or rejected
without incoherence. Unlike the operational approaches, this nontransitive theory
maintains the equivalence between accepting —A and rejecting A, and between
rejecting —A and accepting A. Thus, =4 too must be neither accepted nor rejected.
In acceptance, then, this approach is like a paracomplete approach: it accepts nei-
ther A nor —A. In rejection, it is like a paraconsistent approach: it rejects neither 4
nor —A. However, given our above definitions, this theory is neither paracomplete
nor paraconsistent.!?

28.5.2 Getting rid of contraction: noncontractive solutions
The other sort of substructural approach we'll consider retains the rule of cut, and does

without the rules of contraction. Such an approach is recommended and outlined in
Beall and Murzi (2013); Shapiro (2010); and Zardini (2011). On a noncontractive

12 For a variant nontransitive theory that is both paracomplete and paraconsistent on the present
definitions, see Ripley (2013).
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approach, one can allow that the sequents p+ 4,4 and 4, 1+ g are derivable, but insist
that the sequents p - A and A - q are not; this blocks the derivation of p - .12

Moreover, it blocks the derivation in a way that allows for the negation rules and the
cut rule to be preserved. This allows the resulting logical systems to behave quite intui-
tively in a number of ways. By preserving the classical flip-flop behavior of negation, the
noncontractive theorist, like the nontransitive theorist, preserves the conditional flavor
of the material conditional. Noncontractive logics can thus also maintain all of >-iden-
tity, modus ponens, and the deduction theorem.!

If & is the conjunction that reflects the operation of premise combination (multi-
plicative conjunction; see fn. 14), then it is no longer idempotent on a noncontractive
logic; A& A is stronger than A alone. Similarly, if v is the disjunction that reflects the
operation of conclusion combination (multiplicative disjunction; see fn. 14}, then it too
is no longer idempotent; A VA is weaker than A alone. It is these differences that are
exploited in the noncontractive approach to paradoxes. By arguments similar to those
in section 28.3.1, we have both - 4,4 and A, A - without any uses of contraction. If &
and vare as above, this means we have- A vAand A& A ;i.e. A vAisalogical truth, and
A& A is explosive. Classically, this would be a problem, since classically A v A is equiva-
lent to A & A. But noncontractively this is not so; since A VA is weaker than A & 4, this is
no trouble at all.

The noncontractive approach requires us to add subtlety to our account of theories.
Recall that for the other approaches we consider, a theory is a pair of sets: A, the things
accepted by the theory, and R, the things rejected by the theory. We then said thatI" - A
iff it's ruled out to accept everything in I" and reject everything in A, In a noncontractive
logic, however, we can have I't- A, A, A without I'- A, A: it can be that rejecting A
twice is ruled out but rejecting A once is not. This means that, to specify a theory in
a noncontractive logic in the corresponding way, we need to keep track of more than
whether something is accepted or rejected; we also need to keep track of how many times
it is accepted or rejected.

We do this as follows: a theory is still a pair (4, R). Now, however, 4 and R are no
longer sets; they are rather @-long sequences of sets. We index them with natural
numbers for easy reference: thus, A=(A4,A,,...),and R =(R,, R,,...). Foranyn, 4 is
the set of formulas that the theory in question accepts at least n times, and R, is the set of
formulas that the theory in question rejects at least # times. Given this set-up, we have
A2A 2...andR 2R, 2.... Now, we can extend our reading of logical consequence

B Ifwe try to use the rule of cut to combine p - 4,4 and A, AF g , we can only cut out a single
occurrence of A from each sequent; we end up with p, A= A,q . This is no problem; in fact, it’s an axiom!

4 Whether o-contraction is preserved depends on the precise rules used to govern >. In the absence
of contraction, conjunction, disjunction, and the conditional come in two distinct flavors each; these
are sometimes called “additive” and “multiplicative” flavors. (In the presence of both monotonicity and
contraction, these two flavors are equivalent.) Noncontractive approaches retain >-contraction for the
additive o, but not the multiplicative.
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to noncontractive approaches. We say thatI" - A iff no theory can accept each thing in ™ 54
many times as it appears inI" and reject each thing in A as many times as it appears in A 15

Since the noncontractive approach maintains that p+ A, 1, we have it that no theory
can accept p even once and reject A twice; however, since p i+ 4,16 it's ok for a theory to
accept p once and reject A once. Similarly, since 4, 1+ ¢, no theory can accept 1 twice
and reject g, but since A1 g, it's ok for a theory to accept 4 once and reject g. Thus, the
noncontractivist, on this reading, maintains that it's ok for a theory to accept A and ok
for a theory to reject it, so long as it only does one of the two, and only does it once. The
natural question at this point is: how can it be that accepting or rejecting something
once can be ok when accepting or rejecting it twice is out of bounds?

Actual noncontractivists have not tended to frame their views in terms of bounds op
acceptance and rejection, so they have not offered an answer to this precise question,
Thus we pause to very briefly sketch a few understandings of noncontractive conse-
quence that have been offered. Zardini (2011) suggests that the liar sentence exhibits
a kind of instability reminiscent in some ways of a revision theory. The idea is that
from a single occurrence of A one may derive (via the truth rules) —A, but in the pro-
cess of doing this the original occurrence of 4 was destroyed; thus, we don’t have 1 and
—A together, which is a good thing, since A,—A F-. On the other hand, if we have two
occurrences of A, we can use one to derive —A. This may destroy it, but we still have an-
other copy; we then have both 4 and —4 together, which entails anything, even though
the liar on its own does not. Beall and Murzi (2013) suggest thinking of premises as re-
sources to be drawn on in the course of a proof. If drawing on a premise uses it up, then
again we can see why two occurrences can get us farther than one. In a similar vein,
Mares and Paoli (2014) offer a picture of consequence as information extraction; if we
need to use the information contained in a premise twice, that requires us to actually
have the premise twice, on their view.

28.6 CONCLUSION

Classical logic (including cut) seems to rule out the possibility of giving a theory of truth
that validates capture and release, or transparency, or the T-schema. In this chapter,
we've looked at four ways to modify this logical background to open up space for such

B Sincel- is still reflexive and monotonic, we have it that no A can overlap any R, s accepting
something any number of times rules out rejecting it any number of times, and vice versa.

' The noncontractive theorist had better not accept p - 4, since then two cuts with the derivable
sequent A, 1 g would yield the unacceptable p I . Similarly, they had better not accept A - g, since
then two cuts with the derivable sequent p - A, 4 would again yield the unacceptable pt-g. Thisis why
the noncontractive approach quite crucially must go without both contraction on the left and contraction
on the right; this contrasts with the operational approaches above, which only need to go without a single
negation rule each, and can keep the other.
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a theory of truth, and looked at the kinds of theory that fit most naturally with each
modification. Two of the modifications were to the classical theory of negation; these
paracomplete and paraconsistent approaches removed the requirements of exhaus-
tiveness and exclusiveness, respectively. Relaxing exhaustiveness allows for rejecting
both the liar and its negation; relaxing exclusiveness allows for accepting them both.
Changing the theory of negation has effects on the theory of the material conditional as
well, and these effects are a central focus of paracomplete and paraconsistent approaches
(see section 28.4.3).

The other two modifications were to structural rules; noncontractive and
nontransitive approaches can keep the full classical theory of negation, but must make
adjustments elsewhere, either by supposing that two occurrences of the same premise
or conclusion amount to more than a single occurrence, or else by supposing that
logical consequence is nontransitive. Either way, these substructural solutions owe a
theory of logical consequence that can make sense of these adjustments; we've tried to
sketch what such theories might look like.

Our discussion has skipped over philosophical arguments for maintaining (un-
restricted) capture and release, and also skipped over topics (and common termi-
nology) of “gaps,” “gluts,” and more. These topics are all important, and have not
been dealt with here purely on account of space constraints. We leave such topics to
other discussion (Beall and Glanzberg 2008), including much of the work we’ve cited
throughout.
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