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2. Core logic27

We open by presenting a natural deduction system for core logic. This is28

not Tennant’s own system, although it is closely related. (As the paper pro-29

gresses, we’ll get more and more perspective on the differences; we discuss30

them in sections 2.4, 3.5 and 5.1.) The language is an ordinary proposi-31

tional language with connectives ∧,∨,→,¬ of arities 2, 2, 2, 1, respectively.32

We use p, q, r, . . . for atomic formulas and ϕ,ψ, θ, . . . for arbitrary formulas.33

We suppress parentheses according to the following conventions: the con-34

nectives ∧ and ∨ bind more tightly than→, and ¬ more tightly still; and→35

associates to the right. Thus ¬p∧q → r∨s→ t is ((¬p)∧q)→ ((r∨s)→ t).36

2.1. Natural deduction37

We first present core logic via a natural deduction system, following pre-38

sentations such as [15, 21, 22]. This proceeds in the style of [5, 12], with39

an important modification: not every node in a derivation needs to be a40

formula. There is one additional symbol / that can also occupy nodes in41

a derivation. It is important to keep in mind, though, that / is not a42

formula, and does not enter into formula construction. As a result, things43

like ‘¬/’ and ‘/ ∧ p’ make no sense.144

We will call the things that can stand at nodes of a derivation hats (for45

reasons that will emerge). That is, a hat is either a formula or else /.46

Recall that we use ϕ,ψ, θ, . . . for arbitrary formulas; for arbitrary hats, we47

use C,D. There is an important partial order on hats: C ≤ D iff either C is48

/ or C = D. That is, any two distinct formulas are ≤-incomparable, and49

/ is ≤-below all formulas. We will also use the maximum max(C,D) of50

two hats C,D according to this order; note that this is only defined when51

either C = D or one of C,D is /. A sequent, as we use the term, is a set of52

premise formulas and a conclusion hat ; we write Γ�C for the sequent with53

premises Γ and conclusion C. We draw a distinction between sequents and54

arguments: an argument is a sequent with a formula as its conclusion.55

The role of / in these systems is not to carry content, the way a formula56

might. Rather, when it occurs in a derivation, it should be seen as part57

of the structure of that derivation, the surrounds that the content-bearing58

1Tennant uses the symbol ⊥ for this purpose; we use / instead because ⊥ is in
common use in other work as a formula. To reduce potential confusion, we’ve chosen a
symbol that is not usually used as a formula.
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formulas fit into. It plays, then, the same kind of role in a derivation as the59

horizontal bar separating nodes from each other, or the rule labels decorat-60

ing such bars, or markers of which assumptions are discharged; it indicates61

(in concert with other such apparatus) relations between the formulas in62

play.63

Assumptions work as usual in these natural deduction systems, and in64

particular only formulas may be assumed. Any derivation, then, has a set65

Γ of open assumptions, all of which are formulas, and it has a conclusion66

node, which is a hat C. We refer to Γ � C as the sequent of the derivation,67

and the derivation as a derivation of its sequent. What we understand a68

derivation as telling us depends on whether the derivation’s sequent is an69

argument or not. A derivation with sequent Γ�ϕ should be understood as70

a proof of ϕ from the assumptions Γ, or, as we will also say, a proof of the71

argument Γ�ϕ. On the other hand, a derivation with sequent Γ�/ should72

be understood as a refutation of the set Γ. It is very much not a proof of73

/—that wouldn’t make sense, as / does not carry content. We have here74

two fundamentally different roles for a derivation to play: a proof of an75

argument, or a refutation of a set of formulas.76

This is the bilateralism in core logic: a bilateralism of proofs and refu-77

tations. In this setting, it would not be right to understand either proofs or78

refutations as a special kind of the other. The rules of derivation allow us to79

build proofs and refutations both, from components that themselves may80

be proofs and refutations both. In this sense, then, core logic derivations81

are bilateralist: based on two core notions, one positive and one negative,82

neither of which should be understood as a special case of the other. In83

this regard, the bilateralism in core logic is like the bilateralisms explored84

in [1, 23, 24, 25]. Tennant’s discussion of these issues in [19] is useful here.85

To forestall any misunderstandings, however, we note that core logic86

is not at all symmetrical in the way that many bilateralist theories are.87

Proofs and refutations in these systems are not at all each other’s mirror88

image. Even before we present the rules, we can see this already, as they89

apply to different things. A proof is a proof of an argument : a pair of a90

set of premises and a single conclusion; while a refutation is a refutation91

of just a set of formulas. Both are species of derivation, to be sure, but92

neither is reducible to the other.93
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2.2. Rules for core logic94

With that understood, derivations are otherwise relatively standard. What95

makes core logic distinctive, other than some care about the difference96

between formulas and hats, is its use of mostly general eliminations (see97

for example [17] or [10, Ch. 8]), and a bit of fuss around discharge policies.98

Derivations begin, as usual, from assumptions. Any formula may be99

assumed; recall that /, which is not a formula, may not be assumed. An100

assumption of ϕ counts as a proof of ϕ � ϕ: a proof of ϕ from the open101

assumption ϕ.102

2.2.1. Conjunction103

From here, rules proceed connective by connective, with introduction and104

elimination rules for each connective. Each elimination rule has a major105

premise, which will be indicated as we proceed. Many of these rules have106

particular restrictions against certain kinds of vacuous discharge, which we107

will describe as we go.108

ϕ ψ
∧I

ϕ ∧ ψ
ϕ ∧ ψ

[ϕ,ψ]n

...

C
∧En

C

109

Discharged assumptions are marked with [square brackets]; other as-110

sumptions, including other occurrences of these discharged formulas, may111

also occur as assumptions.2 We use numeral annotations (here schema-112

tized as n) to indicate which rule discharges which discharged assumption:113

in any derivation, we assume that each occurrence of each discharging rule114

wears a distinct discharge numeral, and that each discharged assumption115

wears the numeral corresponding to the rule occurrence that discharged it.116

Discharge restriction: in ∧E, the discharge [ϕ,ψ] may not be completely117

vacuous. That is, it must discharge at least one occurence of ϕ or at least118

one occurrence of ψ. The major premise of ∧E is ϕ ∧ ψ.119

2See section 2.4 for discussion.
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2.2.2. Disjunction120

ϕ
∨Il

ϕ ∨ ψ
ψ

∨Ir
ϕ ∨ ψ

ϕ ∨ ψ

[ϕ]n

...

C

[ψ]n

...

D
∨En

max(C,D)

121

Discharge restriction: in ∨E, neither discharge [ϕ] nor [ψ] may be vac-122

uous. Recall as well that max(C,D) is only defined when either C = D or123

at least one of C,D is /; in other cases the rule ∨E is not applicable. The124

major premise of ∨E is ϕ ∨ ψ.125

2.2.3. Implication126

[ϕ]n

...

C
→In

ϕ→ ψ

ϕ→ ψ ϕ

[ψ]n

...

C
→En

C

127

In the rule →I, we must have C ≤ ψ. In addition, if C is /, then the128

discharge of [ϕ] must not be vacuous. However, in cases where C is ψ itself,129

the discharge [ϕ] may be vacuous. In →E, the discharge [ψ] may not be130

vacuous. The major premise of →E is ϕ→ ψ.131

2.2.4. Negation132

[ϕ]n

...

/
¬In ¬ϕ

¬ϕ ϕ
¬E /

133

Discharge restriction: in ¬I, the discharge [ϕ] may not be vacuous. The134

major premise of ¬E is ¬ϕ.135
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2.3. Core derivations and core logic136

What we have in view so far is in fact a proof system for intuitionistic logic,137

not core logic. That is, an argument Γ � ϕ is provable in this system iff it138

is intuitionistically valid, and a set Γ of formulas is refutable in this system139

iff it is intuitionistically inconsistent.3140

To get to core logic, we use the notion of a core derivation, which we now141

present. A derivation is core iff every major premise of every elimination142

rule in it is an assumption, and a sequent is core derivable iff it is the143

sequent of some core derivation. We say that an argument is core provable144

iff it has a proof that is core, and that a set of formulas is core refutable iff145

it has a refutation that is core.146

Not every provable argument is core provable. For example, ¬p, p� q is147

provable as follows:148

¬p [p]1
¬E /→I1

p→ q p [q]2
→E2

q

149

This derivation is not core, as the major premise of →E in it is the con-150

clusion of a step of →I rather than an assumption. And indeed there is no151

core proof of ¬p, p � q. To see this, note (by checking the rules) that in a152

core derivation, every formula that occurs must be a subformula either of153

some open assumption or of the conclusion. That gives very little room to154

work with when attempting to prove ¬p, p� q, and it’s not hard to see that155

the task can’t be done. The closest we can get is instead a core refutation156

of the set {¬p, p}:157

¬p p
¬E /158

Similarly, not every refutable set of formulas is core refutable. For159

example, the set {¬p, p, q} is refutable as follows:160

¬p

p q
∧I p ∧ q [p]1
∧E1

p
¬E /

161

3For discussion of this point, see [13, 20].
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However, this set has no core refutation, by similar reasoning to the above.162

Again, the closest we can get is a core refutation of the distinct set {¬p, p}.163

One way to see core logic as a consequence relation is this: say that a164

sequent Γ � C is in core logic iff it is core derivable. As we’ve just seen,165

then, neither ¬p, p � q nor ¬p, p, q � / is in core logic, but ¬p, p � / is in166

core logic. In this sense, then, core logic is nonmonotonic on both sides:167

neither ⊆ on the left nor ≤ on the right preserves core derivability.168

Core logic is probably best known for not admitting cut : there are cases169

where both Γ � ϕ and ϕ,∆ � C are in core logic, but where Γ,∆ � C is not.170

For example, p � p ∨ q and ¬p, p ∨ q � q are both core derivable, but we’ve171

just seen that ¬p, p � q is not. What holds instead is a property Tennant172

calls epistemic gain: whenever both Γ � ϕ and ϕ,∆ � C are in core logic,173

then there is some Σ � D in core logic such that Σ ⊆ Γ ∪ ∆ and D ≤ C.174

Tennant appeals to epistemic gain to defuse criticisms of core logic based on175

its not admitting cut, and we will depend on epistemic gain in much of our176

reasoning that follows. It’s not our purpose here, however, to evaluate core177

logic, so we don’t discuss such defenses further; our purposes just involve178

noting that this epistemic gain property holds.179

2.4. The Prawitz restriction180

That, then, is the natural deduction system we will work with in what181

follows. It differs from Tennant’s own systems for core logic and its rel-182

atives in one important respect, which is the topic of this subsection and183

sections 3.5 and 5.1. Tennant’s systems, as we interpret them, impose a184

further restriction on discharges, one that we do not impose: that whenever185

a rule application can discharge an occurrence of an open assumption, it186

must discharge that occurrence.187

The first thing to note about this restriction is that it has nothing188

special to do with core logic. Restrictions like this can be imposed, or not,189

in ordinary natural deduction systems for logics of all sorts. For example,190

Gentzen’s original system NJ (in [5]) for intuitionistic logic does not impose191

any such restriction; but Prawitz’s closely-related system I (in [12]) for192

intuitionistic logic adds this restriction. Accordingly, we call this restriction193

‘the Prawitz restriction’, and call a derivation ‘Prawitz’ when it obeys this194

restriction.4195

4For Tennant’s imposing this restriction, see for example [16, p. 674], [22, §§2.3.2,
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2.4.1. Keeping track of discharge196

The main reason to impose the Prawitz restriction, as we see it, is that197

it saves on some bookkeeping. (This is discussed in [12, §I.4].) With the198

restriction imposed, there is no need to mark separately in a derivation199

which assumptions are discharged, and no need to mark what rules do the200

discharging work. In a Prawitz derivation, each assumption is discharged201

if and only if it can be, and discharged by the earliest rule that could have202

done the discharging.5203

For example, take our above-presented natural deduction system. Now204

consider this:205
p p

∧I p ∧ p
→I

p→ p ∧ p
→I

p→ p→ p ∧ p

206

If this is to be understood as a Prawitz derivation, both assumptions of207

p must in fact be discharged—despite the fact that these occurrences of208

→I allow for vacuous discharges. This is because the Prawitz restriction209

requires every rule to discharge every assumption it can. Since these oc-210

currences of →I introduce formulas with antecedent p, they can discharge211

assumptions of p; and so they must discharge any such assumptions not212

already discharged. This means, in addition, that both assumptions of p213

must be discharged by the upper instance of →I. The lower instance, then,214

does feature vacuous discharge, since by the time it is reached there are no215

further open assumptions.216

4.6].
In some other places, however, Tennant is less explicit. For example, [21, p. 454]

imposes the restriction explicitly only for those cases of →I where vacuous discharge
would be permissible; and [20] does not state any explicit policy, but on p. 315 includes
discussion that seems to require the Prawitz restriction. We (tentatively) think it’s
probably best to interpret these sources too as imposing the restriction.

5An anonymous referee suggests that another motivation for the Prawitz restriction
might come from searching for derivations of a given sequent, because the restriction
‘allows for faster breakdown in the complexity of sequents for which proofs are being
sought’.

However, we think that imposing the Prawitz restriction simply cannot be an aid to
finding derivations of a given sequent. Any derivation-search strategy that succeeds in
finding a Prawitz derivation thereby succeeds in finding a derivation. So any strategy
that works in the presence of the Prawitz restriction will work exactly as well in its
absence.
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It is the Prawitz restriction that allows us to conclude all this from217

the structure above. Without the Prawitz restriction in place, there are218

options. Since these uses of →I both allow vacuous discharge, each as-219

sumption of p might be discharged by the upper →I, by the lower →I,220

or not at all; and these choices can be made independently. This means221

that the above display, read as containing no information about discharges,222

corresponds to nine distinct derivations.6223

Working in systems without the Prawitz restriction, then, more book-224

keeping is needed to indicate which assumptions are discharged and which225

are not, and to indicate which rules do the discharging. Our convention226

is a usual one: every occurrence of a discharging rule in a derivation must227

be annotated with a distinct numeral, and every discharged assumption in228

a derivation must appear surrounded by [square brackets] and annotated229

with the numeral of the rule that discharged it.230

Using this convention, we could indicate the Prawitz derivation de-231

scribed above like so:232

[p]1 [p]1
∧I p ∧ p
→I1

p→ (p ∧ p)
→I2

p→ p→ (p ∧ p)

233

However, we can also use this convention to indicate non-Prawitz deriva-234

tions, for example this one:235

[p]2 [p]1
∧I p ∧ p
→I1

p→ p ∧ p
→I2

p→ p→ p ∧ p

236

Indeed, one of the key reasons we do not impose the Prawitz restriction237

is because we want to study derivations like this latter example. Already,238

though, we can see one important effect of the restriction on Tennant’s own239

natural deduction systems: the property of being a Prawitz derivation is240

not closed under substitution of arbitrary formulas for atomic formulas. To241

6According to some conventions, this display would be read as containing the in-
formation that no discharges have occurred, thus picking out a particular one of these
nine.
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see this, return to the most recent displayed derivation, the non-Prawitz242

one, and note that it is a substitution instance (substituting p for q) of the243

following derivation, which is Prawitz:244

[p]2 [q]1
∧I p ∧ q
→I1

q → p ∧ q
→I2

p→ q → p ∧ q

245

By dropping the Prawitz restriction, we ensure that our derivations are246

closed under substitutions. We will look at some other reasons for dropping247

this restriction in sections 3.5 and 5.1.248

2.4.2. Prawitz derivations and Prawitz derivability249

Before moving on, we pause to explore the effects of the Prawitz restric-250

tion on derivability and on core derivability.7 It turns out that for simple251

derivability, imposing the Prawitz restriction or not makes no difference:252

Proposition 1. If a sequent has a derivation, it has a Prawitz derivation.253

Proof: Take a sequent with a derivation D. If D itself is Prawitz, we’re254

done. If D is not Prawitz, suppose that all of D’s proper subderivations255

are Prawitz. (By induction on D, it is enough to consider this situation256

only.)257

For example, suppose D ends in an application of →I:258

[ϕ]n

...

C
→In

ϕ→ ψ

259

If D is not Prawitz, but all its proper subderivations are, then this final260

→I leaves some assumptions of ϕ undischarged. D is then a derivation of261

ϕ,Γ � ϕ→ ψ, for some set Γ that does not contain ϕ. By modifying D to262

discharge all open assumptions of ϕ at this final step, we reach a Prawitz263

derivation D′ of Γ � ϕ→ ψ. We can then extend D′ as follows (with fresh264

discharge numerals m, o):265

7Thanks to an anonymous referee for encouraging us to develop this material.
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D′

ϕ→ ψ
→Im

ϕ→ ϕ→ ψ ϕ [ψ]o
→Eo

ϕ→ ψ

266

Note that the discharge labeled m is vacuous, as we know that there267

are no open assumptions of ϕ in D′. This resulting derivation is Prawitz,268

and is a derivation of ϕ,Γ � ϕ→ ψ, just as D itself was.269

This strategy works in general: if D is not Prawitz at its final rule270

occurrence, it must be because this occurrence leaves some assumption271

open that it could have discharged. So we first modify D to a Prawitz D′272

that does discharge everything it can at this final step, and then use →I273

and →E in tandem to restore the needed open assumptions.274

So removing the Prawitz restriction has no effect on which sequents are275

derivable, and thus no effect on provability or refutability. Since derivability276

itself is closed under substitutions, then, it follows that Prawitz derivability277

is also closed under substitutions, even though the property of being a278

Prawitz derivation is not.279

The strategy adopted in the above proof, however, produces non-core280

derivations, even starting from a core derivation. And indeed, the situation281

is different when it comes to core derivability: there are sequents that have282

core derivations but no Prawitz core derivations. For example, consider283

p � p→ p ∧ p; this has the following core derivation:284

p [p]1
∧I p ∧ p
→I1

p→ p ∧ p
285

It does not, however, have any Prawitz core derivation. To see this, note286

that any core derivation of p � p → p ∧ p must end in a step of →I; no287

elimination rule is possible as a last step, since the major premise of that288

elimination rule would have to be an open assumption, and p cannot stand289

as a major premise of any elimination rule. This final step of→I, however,290

is able to discharge any open assumptions of p in the derivation, so in a291

Prawitz derivation it must do so; p cannot stand as an open assumption292

at the end of such a derivation. Accordingly, there is no Prawitz core293

derivation of p � p→ p ∧ p.294
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So imposing the Prawitz restriction or not does make a difference as to295

which sequents are core derivable. Moreover, Prawitz core derivability is296

not closed under substitution: witness the following Prawitz core derivation297

of p � q → p ∧ q.298

p [q]1
∧I p ∧ q
→I1

q → p ∧ q
299

Since Tennant’s own version of core logic imposes the Prawitz restric-300

tion, then, it is not closed under substitutions. However, our liberalized301

version, which does not impose the Prawitz restriction, is.302

3. Terms and reductions303

Here, we define a language of terms, and consider reduction relations on304

these terms. The motivating idea is to develop, for the above natural de-305

duction system, a term calculus that corresponds to it in the usual Curry-306

Howard way, the way that the calculus of [8] corresponds to a more usual307

intuitionistic natural deduction system. (This work is begun in [13], which308

explores the ¬,→ fragment of core logic in this way; this section extends309

that work to take account of ∧,∨ as well.) The usual Curry-Howard cor-310

respondence allows us to see intuitionistic proofs as programs in a simply-311

typed lambda calculus, and reduction on proofs as execution of those pro-312

grams. Similarly, the system presented here allows us to see derivations313

in the above-presented proof system as programs, and reduction of those314

derivations as execution.8315

Our types for this system are the formulas of our language. Hats are as316

before: a hat is either a type or /.317

3.1. Terms and eliminators318

We use a mutual induction to define terms, eliminators, and the free vari-319

ables in a term or eliminator. We use M,N,O, etc for terms; each term320

M wears a hat C, indicated as MC. Every term is either typed or excep-321

tional, according to its hat: if its hat is a type, the term is typed; and322

if its hat is /, the term is exceptional. We use E ,F , etc for eliminators;323

8For background and details, see for example [6, 14].
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each eliminator E wears both a type ϕ and a separate hat C, indicated as324

ϕEC. We sometimes have use for metavariables that can be either terms or325

eliminators; for this purpose we use X,Y, etc. For every type ϕ we assume326

denumerably many variables xϕ, yϕ, etc; there are no variables with hat /.327

For any term or eliminator X there is a set FV(X) of variables that are X’s328

free variables.329

Definition 1 (Terms and eliminators).330

Terms:331

• All variables are terms; for any variable x, we have FV(x) = {x}.332

• For any terms Mϕ and Nψ, there is a term 〈M,N〉ϕ∧ψ. We have333

FV(〈M,N〉) = FV(M) ∪ FV(N).334

• For any term Mϕ and type ψ, there are terms (inl(M))ϕ∨ψ and335

(inr(M))ψ∨ϕ. We have FV(inl(M)) = FV(inr(M)) = FV(M).336

• For any term M/ with xϕ ∈ FV(M), there is a term (λ¬x.M)¬ϕ,337

and in addition for each type ψ a term (λ→x.M)ϕ→ψ. We have338

FV(λ¬x.M) = FV(λ→x.M) = FV(M) \ {x}.339

• For any term Mψ and variable xϕ, there is a term (λ→x.M)ϕ→ψ.340

Again, FV(λ→x.M) = FV(M) \ {x}.341

• For any term Mϕ and eliminator ϕEC, there is a term (ME)C. We342

have FV(ME) = FV(M) ∪ FV(E).343

Eliminators:344

• For any term NC with {xϕ, yψ} ∩ FV(M) 6= ∅, there is an eliminator345

ϕ∧ψL〈x, y〉.NMC. We have FV(L〈x, y〉.NM) = FV(N) \ {x, y}.346

• For any terms NC and OD with xϕ ∈ FV(N) and yψ ∈ FV(O),347

such that either C ≤ D or D ≤ C, there is an eliminator348

ϕ∨ψLx.N, y.OMmax(C,D). We have FV(Lx.N, y.OM) = (FV(N) \ {x}) ∪349

(FV(O) \ {y}).350

• For any terms Nϕ and OC with xψ ∈ FV(O), there is an eliminator351

ϕ→ψLN, x.OMC. We have FV(LN, x.OM) = FV(N) ∪ (FV(O) \ {x}).352

• For any term Nϕ, there is an eliminator ¬ϕLNM/. We have FV(LNM) =353

FV(N).354
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All terms and eliminators are identified up to change in bound variables,355

and we make free use of this identification without further comment. As356

you may have noticed in the above definition, we often omit hats, either357

where they can be inferred or where we are generalizing.358

By comparing the above definitions to the natural deduction system,359

you can see the following correspondences:360

Open assumption of ϕ Free variable of type ϕ
Discharging an assumption of ϕ Binding a variable of type ϕ
Derivation of the sequent Γ � C Term MC with FV(M) having types in Γ

361

Let’s look at two examples, to get the flavour. First, our earlier proof362

of ¬p, p � q:363

¬p [p]1
¬E /→I1

p→ q p [q]2
→E2

q

364

We can annotate this derivation as follows:365

w : ¬p [x : p]1
¬E

wLxM : /
→I1

λ→x.wLxM : p→ q y : p [z : q]2
→E2

(λ→x.wLxM)Ly, z.zM : q

366

This derivation thus corresponds to the term (λ→x.wLxM)Ly, z.zM,367

which, fully spelled out with all hats visible, is368

(λ→xp.(w¬pLxpM)/)p→q(p→qLyp, zq.zqMq)q.369

Second, our earlier example of a derivation that violates the Prawitz370

restriction:371

[p]2 [p]1
∧I p ∧ p
→I1

p→ (p ∧ p)
→I2

p→ p→ (p ∧ p)

372

We can annotate this derivation as follows:373
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[x : p]2 [y : p]1
∧I 〈x, y〉 : p ∧ p

→I1
λ→y.〈x, y〉 : p→ (p ∧ p)

→I2
λ→x.λ→y.〈x, y〉 : p→ p→ (p ∧ p)

374

This derivation thus corresponds to the term (λ→x.λ→y.〈x, y〉), which, fully375

spelled out, is (λ→xp.(λ→yp.(〈xp, yp〉)p∧p)p→p∧p)p→p→p∧p. Hopefully it is376

by now apparent why we often suppress hats where they are not needed!377

3.2. Terminology378

Terms of the form 〈M,N〉, inl(M), inr(M), λ→x.M , or λ¬x.M are introduc-379

tions. Terms of the form ME are eliminations. So every term is a variable,380

an introduction, or an elimination.381

Variables have no immediate subterms. The immediate subterms of382

an introduction or an eliminator are what you’d expect. (For example, the383

immediate subterms of LN, x.OM are N and O.) The immediate subterms of384

an elimination ME are M and the immediate subterms of E . The subterm385

relation is the reflexive transitive closure of the immediate subterm relation.386

All immediate subterms of an eliminator are minor subterms of that387

eliminator. In eliminators of the form L〈x, y〉.NM or Lx.N, y.OM, these mi-388

nor subterms are also commuting subterms. In eliminators of the form389

LN, x.OM, only O is a commuting subterm. And in eliminators of the form390

LNM, there are no commuting subterms. The minor and commuting sub-391

terms of an elimination ME are those of the eliminator E . The major392

subterm of an elimination ME is M . Note that every immediate subterm393

of an elimination is either major or minor.394

3.3. Composition of eliminators395

Given two eliminators ϕEψ and ψFC, the eliminator ϕLEFMC is the elimina-396

tor like E , but with each commuting subterm P of E replaced with PF .9 For397

example, if E is ϕ→ψLNϕ, x.Oθ∧ρMθ∧ρ and F is θ∧ρL〈y, z〉.PCMC, then LEFM398

is LN, x.OFM. As the commuting subterms of an eliminator always wear399

the same hat as the eliminator’s right (output) hat, this is well-defined.400

9Change to bound variables in E might be needed here to avoid capturing any vari-
ables free in F .



16 Emma van Dijk, David Ripley, Julian Gutierrez

3.4. Substitution401

Capture-avoiding substitution of terms for variables in this calculus works402

as it does in similar calculi; there’s nothing particularly remarkable about403

it. We pause to go through the details nonetheless; many aspects of core404

type theory do not work as usual, so it’s worth checking the details even405

of those aspects that do.406

Where xϕ1

1 , . . . , xϕn
n are distinct variables and Nϕ1

1 , . . . , Nϕn
n terms407

of corresponding types, then [x1 7→ N1, . . . , xn 7→ Nn] is a substitu-408

tion. (Note that all substitutions are finite.) Given a substitution σ,409

the substitution σ↓y is just like σ except that it does not substitute410

anything for the variable y. That is, [x1 7→ N1, . . . , xn 7→ Nn]↓xi411

is [x1 7→ N1, . . . , xi−1 7→ Ni−1, xi+1 7→ Ni+1, . . . , xn 7→ Nn]; and412

[x1 7→ N1, . . . , xn 7→ Nn]↓y is just [x1 7→ N1, . . . , xn 7→ Nn] if y is not413

one of the xis. Say that a variable y is free in [x1 7→ N1, . . . , xn 7→ Nn] iff414

it is free in some Ni; and say that y is acted on by [x1 7→ N1, . . . , xn 7→ Nn]415

iff it is one of the xi.416

Given a term or eliminator, capture-avoiding substitution works as417

usual:418

• xi[x1 7→ N1, . . . , xn 7→ Nn] = Ni;419

• y[x1 7→ N1, . . . , xn 7→ Nn] = y, where y is not one of the xis;420

• 〈M,N〉σ = 〈Mσ,Nσ〉;421

• inl(M)σ = inl(Mσ); inr(M)σ = inr(Mσ);422

• (λ→y.M)σ = λ→y.(Mσ↓y), assuming y is not free in σ;10423

• (λ¬y.M)σ = λ¬y.(Mσ↓y), assuming y is not free in σ;424

• (ME)σ = (Mσ)(Eσ);425

• ¬ϕLMMσ = ¬ϕLMσM;426

• ϕ∧ψL〈x, y〉.MMσ = ϕ∧ψL〈x, y〉.Mσ↓x↓yM, assuming neither x nor y is427

free in σ;428

10Recall that we identify terms up to change of bound variable. So if y is free in σ,
we first change the bound variable y in λ→y.M to some variable that is not free in σ.
(Since all substitutions are finite, there is always some such.) All similar assumptions
in this definition should be read the same way.
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• ϕ∨ψLx.M, y.NMσ = ϕ∨ψLx.Nσ↓x, y.Oσ↓yM, assuming neither x nor y429

is free in σ; and430

• ϕ→ψLM,x.NMσ = ϕ→ψLMσ, x.Nσ↓xM, assuming x is not free in σ.431

Note two things: first that, since there are no variables with hat /, that432

M [x 7→ N/] is never defined; and second that substitution never affects433

hats: that is, the hat on MC[x 7→ N ] is always exactly C.434

Substitution interacts pleasantly with composition of eliminators:435

Lemma 3.1. Given eliminators E and F such that LEFM is defined, and a436

substitution σ, the eliminator L(Eσ)(Fσ)M is LEFMσ.437

Proof: Unpacking definitions.438

3.5. The Prawitz restriction on terms439

Recall that the Prawitz restriction on derivations requires that when any440

rule application in a derivation can discharge any open assumption, it must441

discharge that open assumption. The corresponding restriction on terms442

is this: that whenever a component of a term binds a variable of type ϕ,443

it binds all free variables of type ϕ in its scope. Equivalently, the Prawitz444

restriction corresponds to a term system with a single variable of each445

type, rather than the denumerably many variables of each type that we446

have assumed.11447

We noted in section 2.4 that there are many derivations in our system448

that do not obey the Prawitz restriction, such as the derivation repeated449

here:450

[p]2 [p]1
∧I p ∧ p
→I1

p→ p ∧ p
→I2

p→ p→ p ∧ p

451

This derivation corresponds to the term (λ→xp.λ→yp.(〈x, y〉)p∧p)p→p→p∧p.452

This term requires two distinct variables of type p. This is because λ→y453

11Term systems like this are not often explored, because they do not allow for a defini-
tion of capture-avoiding substitution; our definition in section 3.4, like other definitions,
relies crucially on being able to draw on fresh variables of a given type to avoid clashes
between free and bound variables. (As we will see in section 5.1, this interference with
substitution also blocks strong normalization.)
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must bind the y in 〈xp, yp〉 without binding the x, so that the outer λ→x454

can bind the x instead.455

This brings us to the main reason we’ve chosen to go without the456

Prawitz restriction: the terms it excludes include terms with natural and457

important computational behaviour. The term λ→x.λ→y.〈x, y〉 is a very458

simple pairing function, a function that takes inputs x and y and returns459

their ordered pair.12 Imposing the Prawitz restriction would allow us to460

define this function only in the case where the two inputs have distinct461

types, but it is also perfectly natural to want to pair up two pieces of data462

that have the same type.463

Indeed, the Prawitz restriction prevents us from defining any functions464

that take multiple inputs of the same type: the binding required for the465

final input is required by the Prawitz restriction to bind all free variables466

of that type; any outer bindings of that same type turn out vacuous. It467

would be impossible, for example, to build basic arithmetic on the Church468

numerals (see [7, Ch. 4]) in a system obeying the Prawitz restriction, since469

this requires defining addition and multiplication functions, each of which470

takes two inputs of the same (numeric) type.471

We take it, then, that most standard term systems work without the472

Prawitz restriction for good reason, and so we develop core type theory473

without any such restriction.474

4. Reduction475

In this section, we define two relations of reduction on terms of our calculus:476

what we call principal reduction and full reduction. The difference is that477

full reduction includes commuting conversions; principal reduction does478

not. We then prove a number of lemmas about these reduction relations, in479

the leadup to section 5, where we prove that principal reduction is strongly480

normalizing. We conjecture that full reduction is also strongly normalizing,481

but leave that question for future work.482

4.1. Redexes and reducts483

Both reduction relations are defined by identifying a class of special terms484

called redexes, and assigning to each redex a term called its reduct. The485

12This is the function written (,) in Haskell, for example.
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difference between principal reduction and full reduction is entirely in which486

terms are redexes. Then, given a chosen notion of redex, for any term M487

that contains a redex R as a subterm, we define a specific term as the one-488

step reduction of M at R. The move from redexes to one-step reduction489

is very much not as usual; this is one of the more distinctive features of490

core type theory, and it is a key motivation of this work to explore this491

nonstandard notion. Let’s dive in.492

4.1.1. Principal redexes493

The following table displays the forms of all principal redexes and their494

corresponding reducts.495

Redex Reduct
〈M,N〉L〈x, y〉.OM O[x 7→M,y 7→ N ]
inl(M)Lx.N, y.OM N [x 7→M ]
inr(M)Lx.N, y.OM O[y 7→M ]
(λ→x.(Mψ))LN, y.OM O[y 7→M [x 7→ N ]]
(λ→x.(M/))LN, y.OM M [x 7→ N ]
(λ¬x.M)LNM M [x 7→ N ]

496

In defining principal reduction, all and only the principal redexes count as497

redexes.498

4.1.2. Commuting redexes499

Any term of the form (ME)F is a commuting redex ; its reduct is MLEFM.500

Note that LEFM is defined, and MLEFM well-formed, whenever (ME)F is501

well-formed. Note as well that no commuting redex is a principal redex,502

so given a redex (of either kind), the reduct of that redex is unambigu-503

ously determined. In defining full reduction, both principal redexes and504

commuting redexes count as redexes.505

Since we focus on principal reduction rather than full reduction in sec-506

tion 5, we don’t linger specifically on commuting redexes. However, the507

definitions and lemmas in this section don’t care about the difference; when508
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we speak of ‘reduction’ unqualified, we are making a definition or claim that509

applies to both principal and full reduction.13510

4.2. One-step reduction511

Using these redexes and their reducts, we define a relation of one-step512

reduction between terms. (Since we have two different choices for what513

counts as a redex—principal only or principal plus commuting—we end up514

with two different choices for a one-step reduction relation: principal or515

full.) Given any term that contains an occurrence of a redex at a subterm,516

we define the unique result of reducing that term at that redex occurrence.517

That much is as usual for term systems like this.518

However—and this is not usual—reduction in this system is not a com-519

patible relation. That is, we do not always simply replace a redex with its520

reduct in place, leaving its context alone. Such a procedure could not work521

in core type theory. The reason is that the result of such a procedure is522

not always well-formed in this system.523

For example, consider the redex ((λ→yϕ.xψ)wϕ)ψ with reduct xψ as524

it occurs in the term (λ→w.(z¬ψL(λ→y.x)wM)/)ϕ→θ. Replacing this redex525

with its reduct would yield (λ→w.(z¬ψLxψM)/)ϕ→θ. This latter, however,526

is not a term, as it violates a restriction on λ→, which may not bind w527

vacuously in this situation. (This restriction corresponds to the restrictions528

against certain cases of vacuous discharge in the rule →I.)529

This is an example of the following. Many of our formation rules (in530

the above example, using λ→ to bind into an exceptional term) require cer-531

tain variables to appear free; but some redexes, because they themselves532

involve vacuous binding, contain free variables that are not contained in533

their reducts. That is, core type theory allows vacuous binding in some534

13There are two more potential sources of redexes that might come to mind, although
we use neither in this paper.

First, uses of an explosion rule like typical ⊥E in natural deduction systems create
possible violations of the subformula property, and so reduction steps are sometimes
introduced to prevent these violations, as in [12, p. 40]. However, core logic contains no
such explosion rules, so no such reduction steps are needed or even possible.

Second, [18] considers a type of reduction there called ‘shrinking’, which in effect
allows a one-step reduction directly from MC to NC whenever N is a subterm of M .
This makes havoc for computational interpretations of the term language, for reasons
discussed in [11]; we leave it aside here.
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circumstances but not all, and it is the interaction between these circum-535

stances that creates the phenomenon of interest.14536

For a different kind of example, consider the redex537

((λ→yϕ.(z¬ϕy)/)ϕ→ψLxϕ, wϕ.wM)ψ with redex (zx)/ as it occurs in538

the term (〈(λ→y.zy)Lx,w.wM, vθ〉)ψ∧θ. Replacing this redex with its539

reduct would yield 〈(zx)/, w〉. This latter, however, is not a term, as the540

constructor 〈 , 〉 requires two typed subterms, and (zx)/ is exceptional.541

This corresponds to the rule ∧I’s requiring formulas as premises.542

This is an example of a different kind of phenomenon. Many of our543

formation rules for terms (in the above example, using 〈 , 〉) require terms544

to be typed; but some redexes are typed and yet have exceptional reducts.545

Reducing such a redex in place, then, yields a nonsensical result.546

The troubles with reducing in place, then, are twofold: moving from a547

redex to its reduct can drop free variables, and it can move from a typed548

term to an exceptional one. But these reductions can happen in places549

where free variables or types are required. Leaving everything else in place,550

then, won’t do in general. In what follows, we show how to handle these551

problems. We start by noting two important facts about redexes and their552

reducts: for any redex RC with reduct R′D, we always have FV(R′) ⊆ FV(R)553

and D ≤ C. That is, free variables and hats do not always remain constant554

between a redex and its reduct, but they cannot change freely; when there555

is a change, it is always in the same direction. We repeatedly use this556

constraint—which is the term-level reflection of epistemic gain—in what557

follows.558

Basically, our strategy works like this: where we can get away with559

reducing in place, leaving the immediate context alone, that’s what we do.560

Where the result would not be well-formed, we simply drop the immedi-561

ate context altogether. That’s the intuition, anyhow; here’s the precise562

definition of one-step reduction.563

Definition 2 (One-step reduction). First, if R is a redex and S its reduct,564

then R reduces to S in one step; as we write, R  1 S. The rest of the565

14Contrast a usual simply-typed lambda calculus, where vacuous binding is always
allowed; but also contrast the lambda calculus of [3], standardly now called the λI
calculus, where vacuous binding is never allowed; also see [2, Ch. 9]. In this calculus,
redexes and their corresponding reducts always have exactly the same free variables (see
[2, Lemma 9.1.2]), so any nonvacuous binding into a redex remains nonvacuous into its
reduct.
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definition contains a number of conditions. These are expressed in the566

form:567

X 1 Y
Z 1 W

568

Here is how such a condition should be read. We only apply it if X,Y,Z569

are each well-formed, without any assumption that W is well-formed. Un-570

der these conditions, if X  1 Y and W is well-formed, then Z  1 W; on571

the other hand, if X 1 Y and W is not well-formed, then Z 1 Y instead.572

This fallback condition—that when W is not well-formed we have Z 1573

Y—is what gives one-step core reduction its distinctive flavour. Note that574

there is no indeterminism or choice introduced here: if W is well-formed575

we do not have Z 1 Y from such a condition. Only in the case that W is576

not well-formed do we fall back to Z 1 Y. Here, then, are the conditions:577

M  1 M
′

ME  1 M
′E

E  1 E ′
ME  1 ME ′

E  1 N

ME  1 N
578

579

M  1 M
′

〈M,N〉 1 〈M ′, N〉
N  1 N

′

〈M,N〉 1 〈M,N ′〉
580

581

M  1 M
′

inl(M) 1 inl(M ′)

M  1 M
′

inr(M) 1 inr(M ′)
582

583

M  1 M
′

λ→x.M  1 λ
→x.M ′

M  1 M
′

λ¬x.M  1 λ
¬x.M ′

584

585

M  1 M
′

LMM 1 LM ′M
M  1 M

′

L〈x, y〉.MM 1 L〈x, y〉.M ′M
586

587

M  1 M
′

LM,x.NM 1 LM ′, x.NM
N  1 N

′

LM,x.NM 1 LM,x.N ′M
588

589
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M  1 M
′

Lx.M, y.NM 1 Lx.M ′, y.NM
N  1 N

′

Lx.M, y.NM 1 Lx.M, y.N ′M
590

Expressed in this way, these conditions might look like usual reduce-in-591

place conditions. But recall our distinctive way of reading these, involving592

fallback in case the lower-right component is not well-formed; this is the593

key to the definition.594

Since this is an unusual way to handle one-step reduction, let’s look at595

an example. Consider the condition for inl(), reproduced here:596

M  1 M
′

inl(M) 1 inl(M ′)
597

Suppose first that Mψ is (λ→xϕ.yψ)Lz, v.vM. Then M is a redex, with598

reduct y. So, according to the condition for inl(), we can conclude that599

inl(M)ψ∨θ can be reduced in one step to inl(y). So far, so normal.600

Suppose instead, though, that Mψ is (λ→xϕ.y¬ϕLxM)Lz, v.vM. Then M601

is again a redex, now with reduct (yLzM)/. By the same condition, then,602

inl(M)ψ∨θ can be reduced. However, note that inl(yLzM) is not well-formed;603

inl() can only be applied to typed terms, and yLzM is exceptional. Thus,604

inl(M) cannot reduce to inl(yLzM), since the latter isn’t a term at all. So,605

according to the condition for inl(), we conclude that inl(M) reduces in one606

step directly to yLzM.607

Three important facts about one-step reduction. First, terms always608

reduce to terms, while eliminators sometimes reduce to eliminators and609

sometimes to terms. Second, if MC  1 ND, then D ≤ C. Finally, if610

M  1 N , then FV(N) ⊆ FV(M). (All these can be shown by induction on611

the above definition.)612

Let’s look at an example that demonstrates some613

of these complexities. Consider the term M¬(ϕ∧ψ) =614

(λ¬xϕ∧ψ.(w¬θLxL〈yϕ, zψ〉.(λ→vϕ.uθ)yϕMM)/). The free variables of615

this term are w¬θ and uθ, and so this term corresponds to a derivation of616

the sequent ¬θ, θ � ¬(ϕ ∧ ψ). It contains a redex (λ→v.u)y with reduct617

u, inside the eliminator L〈y, z〉.(λ→v.u)yM. Let’s go through the one-step618

reduction of M at this redex.619

First, we note that L〈y, z〉.uM is not well-formed, since a conjunction620

eliminator cannot bind fully vacuously; so we reduce L〈y, z〉.(λ→v.u)yM di-621

rectly to u itself. Having done this, we note that xϕ∧ψuθ is also not well-622

formed; no rule allows us to juxtapose two terms at all. So we reduce623
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xL〈y, z〉.(λ→v.u)yM also directly to u. The next two layers do work in place,624

so we reduce wLxL〈y, z〉.(λ→v.u)yMM to wLuM. The final layer, however, runs625

into trouble again; as x is not free in wLuM, the binder λ¬x may not bind626

into wLuM. So M itself reduces to (wLuM)/. Although we have here worked627

through this reduction layer by layer, we emphasize that this is one-step628

reduction; this is the result of reducing a single term at a single redex.629

4.3. Reduction concepts630

Definition 3 (Reduction paths). Given a relation  1 of one-step reduc-631

tion, a reduction path from X is a sequence (finite or infinite) X0, . . . ,Xn, . . .632

such that X0 = X, and for each n, Xn  1 Xn+1. For a finite reduction path633

X0, . . . ,Xn, we say it is a reduction path from X0 to Xn, and its length is634

the number n of reduction steps in it.635

Definition 4 (Normal, strongly normalizing). A term or eliminator is636

normal iff all reduction paths from it have length 0. A term or eliminator637

is strongly normalizing iff all reduction paths from it are finite.638

If a term M is strongly normalizing, then |M | is the length of its longest639

reduction path. (If M is not strongly normalizing, |M | is not defined.) We640

also define |E| for eliminators E , but slightly differently: |E| is the total of641

all |N | for E ’s immediate subterms N , and is undefined if any such |N | is642

undefined.643

Definition 5 (Multistep reductions). We say X reduces to Y, written644

X  Y, iff there is a (necessarily finite) reduction path from X to Y. We645

say X properly reduces to Y, written X + Y, iff there is a reduction path646

from X to Y with length at least 1.647

Note, now by induction on reduction paths, that if MC  ND (and so648

also if M  + N), then D ≤ C and FV(N) ⊆ FV(M).649

Since we have two different notions of reduction in view (principal and650

full), we also have two different notions of normal form, strongly normal-651

izing, etc. It’s worth pausing here to think a bit about relations between652

these. Since full reduction is defined in terms of all the principal redexes653

(and then some), we have that any principal reduction path is also a full654

reduction path. This gives us that any term in full normal form is also in655
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principal normal form, and that any term that is fully strongly normalizing656

is also principally strongly normalizing.15657

We also note that the full normal forms are exactly the core terms.658

Corresponding to our definition of core derivations, we say that a term is659

core iff in all its subterms of the form ME , the term M is a variable. This660

is also what it takes to be a full normal form: M is an introduction iff ME661

is a principal redex, and M is an elimination iff ME is a commuting redex.662

4.4. Reduction lemmas663

Here we prove a number of facts about reduction, and about interactions664

between reduction and substitution, that will be used in section 5. These665

facts hold for both principal and full reduction.666

Lemma 4.1. All the clauses of definition 2 hold as well for  . That is,667

where668

X 1 Y
Z(X) 1 Z(Y)

669

is a condition appearing in definition 2, for any terms or eliminators670

X,Y,Z(X) such that X Y: if Z(Y) is well-formed we have Z(X) Z(Y),671

and if Z(Y) is not well-formed we have Z(X) Y.16672

Proof: Induction on the reduction path from X to Y. At each step, we673

need to know that if Z(Y) is well-formed and W  1 Y, then Z(W) is also674

well-formed—this way, if Z(Y) is well-formed, we can ensure that all the675

needed intermediate links from Z(X) to Z(Y) are also well-formed. This676

holds, though, because of what we know about how reduction affects hats677

and free variables.678

Lemma 4.2. If N  1 N
′ and N is a subterm of M , then there is some M ′679

with M  1 M
′ and N ′ a subterm of M ′.680

15We do not consider in this paper, outside this footnote, the notion of weak nor-
malization, where a term M counts as weakly normalizing iff there is some normal form
N with M  N . In general, when we have two notions of reduction  a ⊆  b, like
our principal and full reductions, nothing useful follows about a relationship between
weak normalization for a and b. In this regard, weak normalization is unlike both strong
normalization and normal forms.

16Here, Z(X) should be understood as a term or eliminator with X as an immediate
constituent, and similarly for Z(Y).
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Proof: Induction on N ’s being a subterm of M .681

• If N = M then reducing the same way yields M ′ = N ′ and we’re682

done.683

• Otherwise, let O be the immediate subterm of M that contains N .684

By the induction hypothesis, there is some O′ with O  1 O
′ and N ′685

a subterm of O′. By inspecting the one-step reduction rules, we can686

see that there is some M ′ with M  1 M
′ and O′ as a subterm.687

688

Lemma 4.3. If there is a reduction path of length n from N to N ′ and N689

is a subterm of M , then there is a reduction path of length n from M to690

some M ′ such that N ′ is a subterm of M ′.691

Proof: Induction on the reduction path from N to N ′, using lemma 4.2692

at each step.693

Lemma 4.4. If M is strongly normalizing and N is a subterm of M , then694

N is also strongly normalizing, and |N | ≤ |M |.695

Proof: Immediate from lemma 4.3.696

Lemma 4.5. If M is strongly normalizing and M  + M ′, then M ′ is697

strongly normalizing and |M ′| < |M |.698

Proof: Immediate from definitions.699

Lemma 4.6 (Substitution lemma (see [2, 2.1.16])). Let σ = [x1 7→700

P1, . . . , xm 7→ Pm] and τ = [y1 7→ Q1, . . . , yn 7→ Qn] be substitutions such701

that all xi are distinct from all yj and no xi occurs free in any Qj. Let702

(στ ) be the substitution [x1 7→ P1τ, . . . , xm 7→ Pmτ ]. Then Xστ = Xτ(στ ).703

Proof: Induction on X.704

• X is a variable. If X is no xi or yj , then both sides are M . If X is xi,705

then both sides are Piτ . if X is yj , then both sides are Qj .706

• X is LOM or 〈N,O〉 or inl(N) or inr(N) or NE . These cases follow707

immediately from the induction hypothesis.708
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• X is λ→z.N . Set up λ→z.N ’s bound variables so that z is no xi or yj ,709

and so that z is not free in any Pi or Qj . The the induction hypothesis710

suffices, since Xστ = λ→z.(Nστ) and Xτ(στ ) = λ→z.(Nτ(στ )).711

• X is a λ¬ term or an eliminator other than LNM. The reasoning in712

these cases is parallel to the λ→ case.713

714

Lemma 4.7 (Substitution in redexes). If R is a redex and R′ is its reduct,715

then R[x1 7→ P1, . . . , xn 7→ Pn] is a redex and R′[x1 7→ P1, . . . , xn 7→ Pn] is716

its reduct.717

Proof: Verifying is a matter of checking each kind of redex in turn. That718

substitution preserves redexhood is relatively straightforward, so we turn to719

the second part of the claim. Let σ be the substitution [x1 7→ P1, . . . , xn 7→720

Pn], and change bound variables in R so that no xi is bound in R and no721

variable free in any Pi is bound in R.722

Principal redexes:723

• If R is (λ→x.(Mψ))LN, y.OM, then R′ is O[y 7→ M [x 7→ N ]]. By724

setting up R’s bound variables (which certainly include x and y) as725

we have, Rσ = (λ→x.Mσ)LNσ, y.OσM, and so its reduct is Oσ[y 7→726

Mσ[x 7→ Nσ]]. By lemma 4.6 (twice) this is O[y 7→ M [x 7→ N ]]σ,727

which is R′σ.728

• If R is (λ→x.(M/))LN, y.OM, then R′ is M [x 7→ N ]. By setting up729

bound variables as we have, Rσ = (λ→x.Mσ)LNσ, y.OσM, and so its730

reduct is Mσ[x 7→ Nσ]. By lemma 4.6, this is M [x 7→ N ]σ, which is731

R′σ.732

• If R is 〈M,N〉L〈x, y〉.OM, then R′ is O[x 7→ M,y 7→ N ]. By setting733

up bound variables as we have, Rσ = 〈Mσ,Nσ〉L〈x, y〉.OσM, and so734

its reduct is Oσ[x 7→ Mσ, y 7→ Nσ]. By lemma 4.6 this is O[x 7→735

M,y 7→ N ]σ, which is R′σ.736

• If R is inl(M)Lx.N, y.OM or inr(M)Lx.N, y.OM or (λ¬x.M)LNM, the737

reasoning is parallel to the above cases.738

As for commuting redexes: If R is (ME)F , then R′ is MLEFM, and739

Rσ = ((Mσ)(Eσ))(Fσ). The reduct of Rσ is thus (Mσ)L(Eσ)(Fσ)M. By740
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lemma 3.1 this is Mσ(LEFMσ); and by lemma 4.6 this is in turn (MLEFM)σ,741

which is R′σ.742

743

Lemma 4.8 (Substitution and reduction). If X  Y, then X[x1 7→744

P1, . . . , xn 7→ Pn] Y[x1 7→ P1, . . . , xn 7→ Pn].745

Proof: Because of the complications in our notion of one-step reduction,746

lemma 4.7 does not immediately suffice for this claim; it needs to be worked747

through.748

It suffices to show that if X 1 Y, then for all substitutions σ we have749

Xσ  1 Yσ. This we show by induction on the formation of X, explic-750

itly stating only some representative cases. (Recall that all substitutions751

preserve hat exactly.)752

753

• If X is a variable x, then there’s nothing to show, since it’s false that754

x 1 Y.755

• If X is NE , there are three possibilities for X  1 Y: the redex is in756

N , in E , or is NE itself.757

– If the redex is inside N , let N ′ be the result of reducing N at758

that redex. Applying the induction hypothesis, Nσ  1 N
′σ;759

moreover, N ′ and N ′σ have the same hat.760

∗ If this hat is /, then Y = N ′, and so Xσ = (Nσ)(Eσ)  1761

N ′σ = Yσ.762

∗ If it is some ϕ, then Y = N ′E , and so Xσ = (Nσ)(Eσ)  1763

(N ′σ)(Eσ) = Yσ.764

– If the redex is inside E , the reasoning is parallel, except instead765

of concern for hats, we are concerned whether E reduces at this766

redex to an eliminator or a term.767

– If the redex is NE itself, we’re covered by lemma 4.7.768

• If X is λ→x.N , change its bound variables so that x is not among the769

xi and not free in any Pi. The redex securing X 1 Y must be inside770

N . Let N ′ be the result of reducing N at that redex. Applying the771

induction hypothesis, Nσ  1 N
′σ. Moreover, N ′ and N ′σ have the772
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same hat, and x is free in N ′ iff it is free in N ′σ. Thus, λ→x.N ′ is773

well-formed iff λ→x.(N ′σ) is.774

– If they are well-formed, then Y = λ→x.N ′, and so Xσ =775

λ→x.(Nσ) 1 λ
→x.(N ′σ) = Yσ.776

– If they are not, then Y = N ′, and so Xσ = λ→x.(Nσ) 1 N
′σ =777

Yσ.778

• Other cases without bound variables are like the case of NE ; other779

cases with bound variables are like the case of λ→x.N .780

781

5. Strong normalization782

The foregoing discussion covers both principal and full reduction. In this783

section, we narrow our attention to principal reduction only, and show784

that every term in our system is (principally) strongly normalizing. In785

this, we closely follow the approach of [4]. (Again, we conjecture that786

full reduction is also strongly normalizing, but leave that question, which787

requires different techniques, for future work.)788

5.1. The Prawitz restriction rerevisited789

First, however, we return briefly to the topic of sections 2.4 and 3.5: the790

Prawitz restriction, which Tennant imposes and we do not. In section 2.4791

we saw that the Prawitz restriction rules out a range of derivations that792

we allow, and in section 3.5 we saw that these derivations include some793

with important computational interpretations. That much alone, we think,794

motivates our dropping the Prawitz restriction. However, there is another795

interesting effect of the restriction, which we point out here: it blocks796

strong normalization, even for principal reduction (and therefore for full797

reduction as well). To show this, we use a (slightly modified) example of798

[9]. (Spelling this out in our term language would save space, but at the799

cost of even lower readability, so we return to derivations for the example.)800
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Figure 1. Strong normalization fails in Tennant’s original system



Core type theory 31

Look to the three derivations in fig. 1. Note that the first principally801

reduces (at the redex indicated with ?) to the second, and the second802

principally reduces (at the redex indicated with ?) to the third. Note also803

that the first and second obey the Prawitz restriction, but the third does804

not; the step of →I indicated with † in the third derivation can discharge805

open assumptions of p, and indeed there are two open assumptions of p in806

scope at that step in the derivation, also indicated with †.807

Reduction in a system obeying the Prawitz restriction, then, could not808

reduce the second derivation here to the third, since the third does not809

belong in such a system. Rather, it would reduce the second derivation810

here to a derivation much like the third, but which discharges the indicated811

open assumptions of p at the indicated step of →I.812

That, in turn, would defeat strong normalization: look to the q node813

indicated with ‡ in the third derivation, and consider the subderivation from814

that node upwards. With the binding in place needed to meet the Prawitz815

restriction, this subderivation is isomorphic to the original derivation, just816

with the roles of p and q switched. So we can repeat the cycle endlessly,817

producing an infinite reduction path.818

Without the Prawitz restriction, on the other hand, the second deriva-819

tion reduces to the third, with no additional binding needed. No cycle is820

created. And as we now show, indeed strong normalization does hold for821

our system.822

5.2. Proving strong normalization823

Definition 6. We define a notion of strongly computable term (SC term)824

by induction on hats:825

• For an atomic type p, a term Mp is SC iff it is strongly normalizing;826

• A term M/ is SC iff it is strongly normalizing;827

• A term Mϕ∧ψ is SC iff it is strongly normalizing and whenever it828

reduces to a term 〈N,O〉, both N and O are SC;829

• A term Mϕ∨ψ is SC iff it is strongly normalizing and whenever it830

reduces to either inl(N) or inr(N), then N is SC; and831
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• A term Mϕ→ψ is SC iff it is strongly normalizing and whenever it832

reduces to a term λ→x.N , then for all SC terms Oϕ, the term N [x 7→833

O] is SC.17834

• A term M¬ϕ is SC iff it is strongly normalizing and whenever it835

reduces to a term λ¬x.N , then for all SC terms Oϕ, the term N [x 7→836

O] is SC.837

It is clear from this definition that every SC term is strongly normal-838

izing. Then we show by induction on terms that every term is SC. This839

works because the inductive structures of terms and of types do not align,840

so we can play them off against each other.841

Lemma 5.1 (Variables). For any type ϕ, every variable of type ϕ is SC.842

Proof: All variables xϕ do not contain any redexes as subterms, thus do843

not have any one-step reductions, and hence all reduction paths from xϕ844

are of length 0, so finite. When ϕ is complex, the additional conditions845

following “whenever it reduces” are vacuously fulfilled, as variables never846

reduce to such forms. So all variables are SC.847

848

Lemma 5.2 (Closure by reduction). If M is SC and M  N , then N is849

SC.18850

Proof: Note first that if M is strongly normalizing and M  N , then851

N too must be strongly normalizing; any infinite reduction path starting852

from N would give rise to an infinite reduction path starting from M .853

Since M is SC, it must be strongly normalizing, so N too must be strongly854

normalizing.855

It remains only to check the additional requirements for N to be SC,856

according to N ’s hat. Recall that if N is Nϕ, then M must be Mϕ.857

858

• If N is N/, then there are no additional requirements, and we’re859

done.860

17[13], which features a similar proof, has a slightly different definition here, following
[7, Appendix A3], but that doesn’t consider conjunction or disjunction. Here, we follow
[4].

18Note that M and N needn’t have the same hat, so this claim precisely as stated in
[4] would be false.
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• If N is Np for an atomic type p, then there are no additional require-861

ments, and we’re done.862

• If Mϕ∧ψ  Nϕ∧ψ, then if Nϕ∧ψ reduces to 〈O,P 〉 so does M . Since863

M is SC, in this case O and P must be SC, so the additional require-864

ment on N is met.865

• If Mϕ∨ψ  Nϕ∨ψ, then if Nϕ∨ψ reduces to inl(O) or inr(O) so does866

M . Since M is SC, in these cases O must be SC, so the additional867

requirement on N is met.868

• If Mϕ→ψ  Nϕ→ψ, then if N reduces to λ→x.O so does M . Since869

M is SC, in these cases it must be that for all SC terms Pϕ, the term870

O[x 7→ P ] is SC. So the additional requirement on N is met.871

• If M¬ϕ  N¬ϕ, then if N reduces to λ¬x.O so does M . Since M872

is SC, in these cases it must be that for all SC terms Pϕ, the term873

O[x 7→ P ] is SC. So the additional requirement on N is met.874

875

Lemma 5.3 (Girard’s lemma). Let M be a term that is not an introduction,876

such that for all N with M  1 N , N is SC. Then M is SC.877

Proof: If there does not exist such an N then M is SC because M does878

not have any one-step reductions, hence all reduction paths from M are of879

finite 0 length and additional requirements depending on hat do not apply.880

SinceN is SC, every reduction path is finite fromN , henceM is strongly881

normalizing because M reduces finitely in one step to N .882

883

• If all N have hat /, then M is SC because M is SN and additional re-884

quirements depending on hat don’t apply because M does not reduce885

to any introductions.886

• If there exists N with an atomic hat, then M has an atomic hat and887

is SC because M is SN.888

Since M is not an introduction, it is not, in reduction to itself, required889

to satisfy the additional conditions for M to be SC for the following hats:890
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891

• If there exists N with a hat of the form ϕ∧ψ, then M has hat ϕ∧ψ.892

If M  1 N  〈O,P 〉, O and P are SC because N is SC. Since M is893

strongly normalizing and whenever M reduces to a term 〈O,P 〉, O894

and P are SC, M is SC.895

• If there exists N with a hat of the form ϕ∨ψ, then M has hat ϕ∨ψ.896

If M  1 N  inl(O) or M  1 N  inr(O), O is SC because N is897

strongly normalizing. Since M is SN and whenever M reduces to a898

term inl(O) or inr(O), O is SC, M is SC.899

• If there exists N with hat ϕ → ψ, then M has hat ϕ → ψ. If900

M  1 N  λ→x.O, for all SC terms Pϕ, the term O[x 7→ P ] is SC.901

Since M is strongly normalizing and whenever M reduces to a term902

λ→x.O, for all SC terms Pϕ, the term O[x 7→ P ] is SC, M is SC903

• If there exists N with hat ¬ϕ, then M has hat ¬ϕ. If M  1 N  904

λ¬x.O, for all SC terms Pϕ, the term O[x 7→ P ] is SC. Since M is905

strongly normalizing and whenever M reduces to a term λ¬x.O, for906

all SC terms Pϕ, the term O[x 7→ P ] is SC, M is SC907

908

Lemma 5.4 (Adequacy of λ (I)). If for all SC Mϕ we have Nψ[x 7→M ] is909

SC, then (λ→x.N)ϕ→ψ is SC.910

Proof: By lemma 5.1 , all variables are SC. Let M := x, N [x 7→ x] =911

N is SC and hence N is strongly normalizing. Thus, λ→x.N is strongly912

normalizing because the only possible reductions involve reducing N within913

the term or reduction to an exceptional term. Thus, the reduction paths914

of N bind the reduction paths of λ→x.N .915

If λ→x.N  λ→x.N ′, then N  N ′ by the reduction rules. By916

lemma 4.8, N [x 7→M ] N ′[x 7→M ] and N ′[x 7→M ] is SC by lemma 5.2.917

Thus, λ→x.N is SC because it is strongly normalizing and whenever it918

reduces to λ→x.N ′, for any SC Mϕ, N ′[x 7→M ] is SC.919

920
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Lemma 5.5 (Adequacy of λ (II)). If for all SC Mϕ we have N/[x 7→ M ]921

is SC (and so long as x ∈ FV(N)), then (λ→x.N)ϕ→ψ and (λ¬x.N)¬ϕ are922

both SC.923

Proof: By lemma 5.1 , all variables are SC. Let M := x, N [x 7→ x] = N is924

SC and henceN is strongly normalizing. Thus, both λ→x.N and λ¬x.N are925

strongly normalizing because the only possible reductions involve reducing926

N within the term or reduction to an exceptional term. Thus, the reduction927

paths of N bind the reduction paths of λ→x.N and λ¬x.N .928

If λ→x.N  λ→x.N ′ or λ¬x.N  λ¬x.N ′, then N  N ′ by the929

reduction rules. By lemma 4.8, N [x 7→M ] N ′[x 7→M ] and N ′[x 7→M ]930

is SC by lemma 5.2.931

Thus, λ→x.N and λ¬x.N are SC because they are strongly normalizing932

and whenever they respectively reduce to λ→x.N ′ and λ¬x.N ′, for any SC933

Mϕ, N ′[x 7→M ] is SC.934

935

Lemma 5.6 (Adequacy of 〈, 〉). If Mϕ and Nψ are both SC, then936

〈M,N〉ϕ∧ψ is SC.937

Proof: 〈M,N〉 is strongly normalizing because the only possible reduc-938

tions involve reducing M and N within the term or reduction to an excep-939

tional term. Thus, since M and N are strongly normalizing, their reduction940

paths bind the reduction paths of 〈M,N〉.941

By lemma 5.2, if M  M ′ and N  N ′ then M ′ and N ′ are SC.942

Whenever 〈M,N〉 reduces to an introduction 〈M ′, N ′〉, M ′ and N ′ are943

SC, thus, since 〈M,N〉 is also strongly normalizing, by definition 6 it is SC.944

945

Lemma 5.7 (Adequacy of inl, inr). If Mϕ is SC, then inl(M) and inr(M)946

are both SC.947

Proof: Wlog, we consider just inl(M).948

inl(M) is strongly normalizing because the only possible reductions in-949

volve reducing M within the term or reduction to an exceptional term.950

Thus, since M is strongly normalizing, reduction paths from inl(M) are951

bound by reduction paths of M .952

By lemma 5.2 if M  M ′, then M ′ is SC.953

Whenever inl(M) reduces to an introduction inl(M ′), M ′ is SC, thus,954

since inl(M) is also strongly normalizing, by definition 6 it is SC.955
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956

Lemma 5.8 (Adequacy of application (I)). If Mϕ→ψ is SC, Nϕ is SC, and957

for all SC Qψ, O[x 7→ Q] is SC, then MLN, x.OM is SC.958

Proof: Let Q = x where x is SC by lemma 5.1, thus O[x 7→ x] = O is959

SC. Since M , N and O are SC, they are strongly normalising and hence960

|M |, |N | and |O| are defined. We proceed by induction on |M |+ |N |+ |O|.961

By lemma 5.3, to prove that MLN, x.OM is SC, we need to prove that all962

one-step reducts are SC. Given M  1 M
′ or N  1 N

′ or O  1 O
′ where963

M ′, N ′, and O′ are SC by lemma 5.2:964

965

• If MLN, x.OM  1 M ′LN, x.OM or MLN, x.OM  1 MLN ′, x.OM or966

MLN, x.OM  1 MLN, x.O′M, then we apply the induction hypothe-967

sis and lemma 4.5 to obtain |M | + |N | + |O| > |M ′| + |N | + |O|,968

|M |+|N |+|O| > |M |+|N ′|+|O| or |M |+|N |+|O| > |M ′|+|N |+|O′|.969

• If MLN, x.OM 1 M
′/ or MLN, x.OM 1 N

′/ or MLN, x.OM 1 O
′/,970

then we already have M ′, N ′, or O′ SC.971

• If MLN, x.OM is a principal redex, then M is of the form λ→y.PD. If972

D = /, then MLN, x.OM  1 P [y 7→ N ] which is SC by definition 6.973

Otherwise MLN, x.OM  1 O[x 7→ P [y 7→ N ]] which is SC by the974

lemma statement.975

976

Lemma 5.9 (Adequacy of application (II)). If M¬ϕ is SC and Nϕ is SC,977

then MLNM is SC.978

Proof: Since M and N are SC, they are strongly normalising and hence979

|M | and |N | are defined. We proceed by induction on |M | + |N |. By980

lemma 5.3, to prove that MLNM is SC, we need to prove that all one-step981

reducts are SC. Given M  1 M
′ or N  1 N

′ where M ′ and N ′ are SC by982

lemma 5.2:983

984

• If MLNM  1 M
′LNM or MLNM  1 MLN ′M then we apply the induc-985

tion hypothesis and lemma 4.5 to obtain |M | + |N | > |M ′| + |N | or986

|M |+ |N | > |M |+ |N ′|.987
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• If MLNM 1 M
′/ or MLNM 1 N

′/, then we already have M ′ or N ′988

SC.989

• If MLNM is a principal redex, then M is of the form λ¬x.O, and990

MLNM 1 O[x 7→ N ] which is SC by definition 6.991

992

Lemma 5.10 (Adequacy of Conjunction elimination). If Mϕ∧ψ is SC, and993

for all SC Pϕ, Qψ the term N [x 7→ P, y 7→ Q] is SC, then ML〈x, y〉.NM is994

SC (if well-formed).995

Proof: Let P = x and Q = y where x and y are SC by lemma 5.1, thus996

N [x 7→ x, y 7→ y] = N is SC. We proceed by induction on |M | + |N |. By997

lemma 5.3, to prove that ML〈x, y〉.NM is SC, we need to prove that all one-998

step reducts are SC. Given M  1 M
′ and N  1 N

′ where M ′ and N ′ are999

SC by lemma 5.2:1000

1001

• If ML〈x, y〉.NM  1 M ′L〈x, y〉.NM or ML〈x, y〉.NM  1 ML〈x, y〉.N ′M1002

then we apply the induction hypothesis and lemma 4.5 to obtain1003

|M |+ |N | > |M ′|+ |N | or |M |+ |N | > |M |+ |N ′|.1004

• If ML〈x, y〉.NM  1 M
′/ or ML〈x, y〉.NM  1 N

′/, then we already1005

have M ′ and N ′ SC.1006

• If ML〈x, y〉.NM is a principal redex, then M is of the form 〈R,S〉1007

and ML〈x, y〉.NM  1 N [x 7→ R, y 7→ S] which is SC by the lemma1008

statement and definition 6.1009

1010

Lemma 5.11 (Adequacy of Disjunction elimination). If Mϕ∨ψ is SC, and1011

for all SC Pϕ the term N [x 7→ P ] is SC, and for all SC Qψ the term1012

O[y 7→ Q] is SC, then MLx.N, y.OM is SC (if well-formed).1013

Proof: Let P = x and Q = y where x and y are SC by lemma 5.1, thus1014

N [x 7→ x] = N and O[y 7→ y] = O are SC. Since M , N and O are SC,1015

they are strongly normalising and hence |M |, |N | and |O| are defined. We1016

proceed by induction on |M | + |N | + |O|. By lemma 5.3, to prove that1017

MLx.N, y.OM is SC, we need to prove that all one-step reducts are SC.1018
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Given M  1 M
′ or N  1 N

′ or O  1 O
′ where M ′, N ′, and O′ are SC1019

by lemma 5.2:1020

1021

• If MLx.N, y.OM  1 M
′Lx.N, y.OM or MLx.N, y.OM  1 MLx.N ′, y.OM1022

or MLx.N, y.OM  1 MLx.N, y.O′M, then we apply the induction hy-1023

pothesis and lemma 4.5 to obtain |M |+ |N |+ |O| > |M ′|+ |N |+ |O|,1024

|M |+|N |+|O| > |M |+|N ′|+|O| or |M |+|N |+|O| > |M ′|+|N |+|O′|.1025

• If MLx.N, y.OM  1 M
′ or MLx.N, y.OM  1 N

′ or MLx.N, y.OM  11026

O′, then we already have M ′, N ′, or O′ SC.1027

• If MLx.N, y.OM is a principal redex, then M is of the form inl(R) or1028

inr(R) and MLx.N, y.OM 1 N [x 7→ R] or MLx.N, y.OM 1 O[y 7→ R]1029

which are both SC by the lemma statement and definition 6.1030

1031

Definition 7. A substitution [x1 7→ P1, . . . , xn 7→ Pn] is SC iff P1, . . . , Pn1032

are all SC. A term M is SC under substitution iff for all SC substitutions1033

σ, the term Mσ is SC.1034

Theorem 1. All terms are SC under substitution.1035

Proof: Take any term M . To see that M is SC under substitution, pro-1036

ceed by induction on M ’s formation.1037

• If M is xϕ then any substitution for x will be a variable and lemma 5.11038

applies.1039

• If M is 〈N,O〉: take any SC substitution σ. By the induction hy-1040

pothesis, N and O are SC under substitution, so Nσ and Oσ are SC.1041

Thus, by lemma 5.6, 〈Nσ,Oσ〉 is SC; but this is just Mσ.1042

• If M is inl(N) or inr(N), the reasoning is similar to the 〈, 〉 case.1043

• If M is λ→xϕ.N : take any SC substitution σ, and change M ’s bound1044

variables so that x is neither acted on by σ nor free in σ. By the induc-1045

tion hypothesis, N is SC under substitution, so for any SC term Pϕ,1046
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we have that Nσ[x 7→ P ] is SC. Thus, by lemma 5.4 and lemma 5.5,1047

λ→x.(Nσ) is SC; but this is just Mσ.1048

• If M is λ¬x.M , the reasoning is similar to the λ→ case.1049

• If M is NLO, x.P M: take any SC substitution σ, and change M ’s1050

bound variables so that x is neither acted on by σ nor free in σ. By1051

the induction hypothesis, N , O and P are SC under substitution, so1052

Nσ, Oσ and Pσ are SC. Given SC Qϕ, we have Pσ[x 7→ Q] is SC.1053

Thus, by lemma 5.8, NσLOσ, x.PσM is SC; but this is just Mσ.1054

• If M is NLOM: take any SC substitution σ. By the induction hy-1055

pothesis, N and O are SC under substitution, so Nσ and Oσ are SC.1056

Thus, by lemma 5.9, NσLOσM is SC; but this is just Mσ.1057

• If M is NL〈x, y〉.OM: take any SC substitution σ, and change M ’s1058

bound variables so that x and y are neither acted on by σ nor free in1059

σ. By the induction hypothesis, N and O are SC under substitution,1060

so Nσ and Oσ are SC. Given SC Pϕ and Qψ, O[x 7→ P, y 7→ Q] is1061

SC. Thus, by lemma 5.10, NσL〈x, y〉.OσM is SC; but this is just Mσ.1062

• If M is NLx.O, y.P M: take any SC substitution σ, and change M ’s1063

bound variables so that x and y are neither acted on by σ nor free in σ.1064

By the induction hypothesis, N , O and P are SC under substitution,1065

so Nσ, Oσ and Pσ are SC. Given SC Qϕ and Rψ, Oσ[x 7→ Q] and1066

Pσ[y 7→ R] are SC. Thus, by lemma 5.11, NσLx.Oσ, y.PσM is SC; but1067

this is just Mσ.1068

1069

Corollary 1. All terms are strongly normalizing.1070

Proof: Take any term M . By theorem 1, M is SC under substitution;1071

clearly, then, M is SC. (Consider the substitution [xϕ 7→ xϕ].) By defini-1072

tion 6, then, M is strongly normalizing.1073

6. Conclusion1074

In this paper, we’ve presented a natural deduction system for core logic, and1075

developed a term calculus that corresponds to this natural deduction sys-1076

tem. We’ve defined two reduction relations on this term calculus—principal1077
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and full reduction—and explored the ways that core logic’s restrictions1078

make reduction somewhat different from reduction in more familiar term1079

calculi. We’ve discussed the Prawitz restriction and our reasons for drop-1080

ping it. And finally, we’ve shown that principal reduction in this system is1081

strongly normalizing (although it would not be with the Prawitz restriction1082

in place). In future work, we hope to extend this strong normalization to1083

full reduction as well, but as that will require different techniques, only1084

time will tell.1085
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