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Pablo Cobreros1, Paul Egré2, David Ripley3, and Robert van Rooij4(B)

1 Department of Philosophy, University of Navarra, Pamplona, Spain
2 CNRS/ENS, PSL/SCAS, Institut Jean-Nicod, Paris, France

3 Department of Philosophy, University of Connecticut, Storrs, USA
4 Institute for Logic, Language and Communication, Amsterdam, The Netherlands

r.a.m.vanrooij@uva.nl

1 Introduction

It is well-known that in combination with further premises that look less contro-
versial, the tolerance principle – the constraint that if Pa holds, and a and b are
similar in P -relevant respects, Pb holds as well – leads to contradiction, namely
to the sorites paradox. According to many influential views of the sorites paradox
(e.g. Williamson 1994), we therefore ought to reject the principle of tolerance as
unsound.

There are reasons to think of such a view as too drastic and as missing out on
the role that such a principle plays in categorization and in ordinary judgmental
and inferential practice. Taking a different perspective, the tolerance principle
ought not to be discarded that fast, even when viewed normatively. Instead, it
corresponds to what might be called a soft constraint, or a default, namely a rule
that we can use legitimately in reasoning, but that must be used with care.

One family of approaches represents the tolerance principle by a certain
conditional sentence, of the form: Pa ∧ a ∼P b → Pb, and bestows spe-
cial properties to the conditional to turn it into a soft constraint. One nat-
ural option is to use fuzzy logic, where vM(A) can be anywhere in [0, 1] and
vM(A → B) = Min{1, 1 − vM(A) + vM(B)}. One can demand that the toler-
ance conditional may never have a value below 1− ε for some small ε. Given an
appropriate sorites sequence, it will be possible to have: vM(Pa1 → Pa2) = 1−ε,
vM(Pa2 → Pa3) = 1 − ε, without having vM(Pa1 → Pa3) = 1 − ε.

A different option is to treat the tolerance conditional as expressing a defea-
sible rule (like when ‘→’ expresses a counterfactual conditional). Say that
Pa ∧ a ∼P b → Pb is true provided Pb is true in all ‘optimal’ (Pa ∧ a ∼P b)-
worlds. Call a world (Pa ∧ a ∼P b)-optimal if a is P -similar to b but is not
close to a borderline case of P . From Pa ∧ a ∼P b, Pa ∧ a ∼P b → Pb, it
need not follow that Pb, since a world may satisfy Pa ∧ a ∼P b without being
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(Pa ∧ a ∼P b)-optimal, precisely when b is a borderline case of P . This condi-
tional fails to satisfy modus ponens, and it is also nontransitive. But moreover
it is nonmonotonic, since a world that is Pa ∧ a ∼P b-optimal need not be
Pa ∧ Pc ∧ a ∼P b-optimal. On that view, the tolerance conditional represents a
defeasible rule, usable only if the main premise correspond to an optimal world.

Both the fuzzy approach and the nonmonotonic approach have some appeal.
On the definition of fuzzy validity that allows tolerance to be a sound premise,
the sorites paradox is solved by saying that modus ponens is not a valid rule
any more (where Γ |= A iff ∀M : Min{vM(γ) : γ ∈ Γ} ≤ vM(A)). On the
nonmonotonic approach, the sorites paradox is solved by saying that modus
ponens is a defeasible rule: the sorites argument has sound premises, but is not
undefeasibly valid. Despite that, both approaches suffer an important limitation,
which concerns their treatment of the tolerance principle in terms of a special
conditional connective. As is well known, a sorites argument can be stated using
only conjunction and negation, by saying that it is not the case that there are
two cases a and b that are very similar, but are such that Pa and not Pb. But a
nonmonotonic treatment of the conditional does not tell us how to address that
alternative version of the sorites. Similarly, for the fuzzy case.

In this paper, we are interested in accounts of vagueness that, instead of rely-
ing on a special conditional connective in a way that leaves intuitively desirable
properties of a conditional connective in place, and in a way suitable to deal
with the sorites argument in its conjunctive form as well as its conditional one.
We will focus on two structural approaches which mirror the nontransitive and
nonmonotone conditional to some extent, but shift those properties up one level,
namely to the consequence relation. The first is the nontransitive treatment of
logical consequence favored in our past work, on which the principle of tolerance
comes out as valid in rule form, but cannot be iterated without risk (soft con-
sequence as permissive consequence, see Cobreros et al. (2014) for an overview).
The second is the nonmonotone treatment of logical consequence, on which the
principle of tolerance too can come out as valid, but in a way that is sensitive to
context and to the addition of further premises (soft consequence as defeasible
consequence).

2 Validating Tolerance Using Non-standard Entailment

We have argued in Cobreros et al. (2012, 2014) that the tolerance principle
should be adopted both in rule form and in sentential form. We were able to do
so by (i) interpreting the language in standard three valued models, (ii) adding
similarity relations (one for each predicate P ) to the language and interpreting
that in a specific way, and (iii) by formulating a new consequence relation, |=st

∼ .
In this section we first rehearse the details of our approach in more detail. We
first concentrate on (i) and (iii). We then consider two broader variants of our
initial strategy, which both rely on a more general notion of pragmatic entailment
which turn out to be non-monotonic.
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2.1 The Logic st

Let M = ⟨D, I⟩, with I a total function from atomic sentences to {0, 1
2 , 1}. This

model extends to formulas according to the strong Kleene valuation scheme:

– VM(φ) = IM(φ), if φ is atomic
– VM(¬φ) = 1 − VM(φ)
– VM(φ ∧ ψ) = min{VM(φ),VM(ψ)}
– VM(φ ∨ ψ) = max{VM(φ),VM(ψ)}
– VM(∀xφ) = min{VM([x/d]φ) : d ∈ D}1

We say that φ is strictly true in M iff VM(φ) = 1, and that φ is tol-
erantly true iff VM(φ) ≥ 1

2 . In terms of this semantics we can define some
well-known logics: Kleene’s K3 and Priest’s LP . Both logics understand entail-
ment as preservation of truth in all models, the difference is that while for K3
truth means strict truth, for LP means tolerant truth:

Γ |=K3 ∆ just in case for all M :
if ∀A ∈ Γ : VM(A) = 1, then ∃B ∈ ∆ : VM(B) = 1

Γ |=LP ∆ just in case for all M :
if ∀A ∈ Γ : VM(A) > 0, then ∃B ∈ ∆ : VM(B) > 0

A fundamental idea in Cobreros et al. (2012) was to define entailment from
strict to tolerant:

Γ |=st ∆ just in case for all M :
if ∀A ∈ Γ : VM(A) = 1, then ∃B ∈ ∆ : VM(B) > 0

Thus, although we don’t give up the idea that entailment is truth-preserving,
we allow the standard of assertion of the conclusions to be weaker than the
standard of assertion of the premises. A surprising feature of this logic is that
although the semantics makes use of three truth-values, the consequence relation
is exactly the familiar consequence relation of classical logic for the standard
language fragment. This in contrast with K3 and LP , which give up many
classically valid arguments.

Now, despite its classicality, this new semantics makes room for tolerance
without falling prey to the sorites paradox. In order to account for tolerance,
we extend the language with similarity relations, ∼P , one for each predicate P .2
One interpretation is the following:

– VM(a ∼P b) = 1 iff |VM(Pa) − VM(Pb)| < 1, 0 otherwise

1 We assume here for convenience that each d ∈ D has a name d.
2 See Halpern (2008) and van Rooij (2010) for more on the link between vagueness
and nontransitive similarity.
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The resulting logic st∼ is a conservative extension of classical logic, in the
sense that any classically valid argument in the old vocabulary remains valid.
In addition, the tolerance formula (∀x, y((Px ∧ x ∼P y) → Py)) becomes
valid, as does the tolerance argument: Pa, a ∼P b |=st

∼ Pb. The endorse-
ment of tolerance does not lead to paradox, however, since tolerance in st∼

leads to non-transitivity: Pa, a ∼P b |=st
∼ Pb and Pb, b ∼P c |=st

∼ Pc BUT
Pa, a ∼P b, b ∼P c ̸|=st

∼ Pc.
We felt, and still feel, that this is a very intuitive and appealing treatment of

the sorites paradox. The treatment however, comes with the limitation that we
should make a distinction about the diagnosis of the sorites paradox depending
on its formulation. If we look at the sorites as a step-by-step argument based
on the validity of tolerance inferences then, though each tolerance inference is
valid, validity breaks when we try to chain these inferences. If we consider the
sorites argument with the tolerance formula (∀x, y((Px∧x ∼P y) → Py)) as an
explicit premise, then although that formula is valid, the resulting argument is
valid but unsound (the tolerance formula is valid but cannot automatically be
appealed to as a premise; it is not suppressible). In short, although the tolerance
formula is valid, according to the logic st∼ we are not in a position to draw on it
as a premise without further ado. However, there are contexts in which we would
like to assert the tolerance formula, in much the same way there are contexts in
which we would like to assert a contradiction; we would like assert, from time
to time, in a tolerant sense

A number of recent psycholinguistic studies (e.g., Alxatib and Pelletier 2011;
Ripley 2011; Egré et al. 2013) show that naive speakers find a logical contra-
diction like ‘John is tall and John is not tall’ acceptable in cases where John
is a borderline tall man. This seems to show that we need to take account of
tolerant truth, since tolerant truth exhibits this exact behavior. However, just
relying on the notion of tolerant truth would mean that the assertion ‘John is
tall’ would be acceptable in the same situation. The same experimental evidence
shows, however, that this is not the case: ‘John is tall’ is taken to be acceptable
only if John is really tall. In terms of our three-valued models this could be
modeled by saying that the assertion ‘John is tall’ is acceptable only if John is
strictly tall. Similarly, Serchuk et al. (2011) found that classical tautologies like
‘Tj ∨ ¬Tj’ are not automatically accepted if John is borderline tall. So making
use of tolerant and of strict truth (which exhibits this latter behavior) seems
required.

The conclusion we draw from the previous discussion (cf. Cobreros et al.
2012) is that we should interpret a sentence strictly if possible, and tolerantly
otherwise. This interpretation strategy is in line with Grice’s (1967) strategy
to account for scalar implicatures. Unfortunately, this interpretation strategy
taken at face value gives rise to trouble for more complex sentences. Alxatib
et al. (2013) show that we wrongly predict that a sentence like ‘Adam is tall
and not tall, or John is rich’ not only entails, but even means that John is
strictly rich, although it should not entail this and intuitively should mean that
either Adam is borderline tall or John is strictly rich. In Cobreros et al. (2015)
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we responded by providing a more sophisticated pragmatic interpretation rule
to strengthen the meaning of a sentence.

2.2 Pragmatic Interpretation

To account for this pragmatic strengthening we make use of truth-makers. We
propose that the pragmatic interpretation of φ makes one exact truth-maker of
φ as true as possible. To determine what the truth-makers of a sentence are, we
follow van Fraassen (1969). We start with a set of basic state of affairs, SOA.
It is assumed that for every element p of SOA there is also its complement
p ∈ SOA for which it holds that p = p. For simplicity we assume a close
correspondence between atomic sentences of the language and the SOAs: with
each literal (atomic sentence or its negation) of the language there corresponds
exactly one SOA: the state of affairs that makes this literal true. The set of
facts, F , is just ℘(SOA) − {∅}, so any non-empty subset of SOA is thought
of as a fact. If p,q ∈ SOA, then {p} and {q} are atomic facts, and {p,q}
is a conjunctive fact. A fact is what makes a sentence true. But, of course,
a sentence might have more than one truth-maker. Atomic sentence p is not
only made true by atomic fact {p}, but also by conjunctive fact {p,q}. The
former one is a more minimal truth-maker than the latter. More interestingly,
disjunctive sentences might have several minimal truth-makers. The disjunction
p ∨ q, for instance, has two minimal truth-makers: {p} and {q}. What we are
after, however, is the notion of the exact truth-makers for φ. We say that the
disjunction p∨(p∧q) – although it has only {p} as its minimal truth-maker – has
two exact truth-makers: {p} and {p,q}. We can give the following simultaneous
recursive definition of the set of exact truth- and falsity-makers of φ, T (φ) and
F (φ), respectively:

T (p) = {{p}} F (p) = {{p}} for atomic p.
T (¬φ) = F (φ) F (¬φ) = T (φ).
T (φ ∧ ψ) = T (φ) ⊗ T (ψ) F (φ ∧ ψ) = F (φ) ∪ F (ψ).
= {X ∪ Y |X ∈ T (φ), Y ∈ T (ψ)}
T (φ ∨ ψ) = T (φ) ∪ T (φ) F (φ ∨ ψ) = F (φ) ⊗ F (ψ).

Notice that according to these rules, T (p) = {{p}}, T (¬p) = {{p}}, T (p ∨ q) =
{{p}, {q}} and T (p ∧ q) = {{p,q}}. We analyse conditionals like φ → ψ as
material implication, that is p → q ≡ ¬p ∨ q, and thus T (p → q) = {{p}, {q}}.

To account for quantifiers, we assume that for each n-place predicate P the
model contains facts like Pd1, , · · ·dn, with each di ∈ D an individual. We
assume for simplicity that each d ∈ D has a unique name d in the language.

– T (Pd1, · · · , dn) = {{Pd1, · · · ,dn}} F (Pd1, · · · , dn) = {{Pd1, · · · ,dn}}
– T (∀xφ) =

⊗
d∈D T (φ[x/d]) F (∀xφ) =

⋃
d∈D F (φ[x/d]).

– T (∃xφ) =
⋃

d∈D T (φ[x/d]) F (∃xφ) =
⊗

d∈D F (φ[x/d]).

Observe that T (∀xPx) = T (Pa) ⊗ T (Pb) = {{Pa,Pb}}, if D = {a, b}.
Similarly, T (∃xPx) = T (Pa) ∪ T (Pb) = {{Pa}, {Pb}}. Notice that facts might
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not only be incomplete (neither verify nor falsify a sentence), they might also
be inconsistent and both verify and falsify a sentence. Indeed, we have not ruled
out facts like {Tj,Tj}. Such inconsistent facts are crucial for us to model the
meaning of vague sentences, expressing in this case that John is borderline tall.

T (φ) can be thought of as a fine-grained semantic interpretation of φ. It
can be used to determine its standard truth-conditional meaning as given by
possible worlds semantics, if a world is taken to be a maximally consistent con-
junctive fact. In that case the standard truth-conditional meaning of φ, [[φ]], can
be recovered as the set of worlds in which φ has a truth-maker:

• [[φ]] def= {w ∈ W | ∃f ∈ T (φ) : f ⊆ w}.

For our purposes, we retain the insistence that worlds be maximal, that p ∈ w
or p ∈ w for each atomic fact p and world w. But we allow for worlds to be
inconsistent, for some worlds to contain both p and p, for some atomic facts p.
This allows us to capture the difference between strict and tolerant satisfaction
at a world, connecting this truth-maker semantics to our three-valued st-models.
For each atomic sentence p and st-model, or world, w we define Vw(p) = 1 iff
p ∈ w and p ̸∈ w; Vw(p) = 0 iff p /∈ w and p ∈ w, and Vw(p) = 1

2 otherwise.
But we did not introduce truth-makers just to recover notions we already

had. Our purpose in introducing truth-makers is to define a notion of pragmatic
meaning in terms of which we can strengthen the semantic meaning of a sentence.
We have suggested above that although we allow for inconsistencies, we can still
pragmatically infer that ¬p is not true from the fact that ‘p’ is said by a reasoning
analogue to those involving scalar implicatures. In linguistic pragmatics it is not
uncommon to use minimal models (e.g. van Rooij and Schulz 2004) to account
for scalar pragmatic implicatures. For us, a minimal model, or world, is one that
is minimally inconsistent: it doesn’t contain more inconsistencies than required.
To model this, we will make use of the following definition, with v <f w iff df

{x ∈ SOA : x ∈ f & x ∈ v} ! {x ∈ SOA : x ∈ f & x ∈ w}):

• PRAG(φ) def= {w ∈ W | ∃f ∈ T (φ) : f ⊆ w & ¬∃v ⊇ f : v <f w}.

PRAG gets many predictions correct: (i) ‘John is tall’ is pragmatically inter-
preted to mean that John is strictly tall, (ii) ‘John is not tall’ is predicted to
mean that John is not even tolerantly tall, (iii) ‘John is tall and John is not tall’
means that John is borderline tall, and (iv) ‘John is tall or not tall’ means that
John is not borderline tall. All these predictions are in accordance with recent
experimental results reported by Alxatib and Pelletier (2011), Ripley (2011),
Serchuk et al. (2011) and Egre et al. (2013). Furthermore, ‘John is tall and not
tall, and Mary is rich’ is pragmatically interpreted to mean that John is border-
line tall and Mary strictly rich, which seems intuitively correct. Finally, ‘John is
tall and not tall, or Mary is rich’ is correctly interpreted as saying that John is
borderline tall, or Mary is strictly rich.

Let us go back now to the tolerance principle. How PRAG interprets it
depends partly on the way we interpret similarity statements. We might use
similarity statements to constrain our models at least in the following ways:



Comparing Some Substructural Strategies Dealing with Vagueness 167

(i) VM(a ∼P b) = 1 iff |VM(Pa) − VM(Pb)| < 1, 0 otherwise, or
(ii) VM(a ∼P b) = 1 − |VM(Pa) − VM(Pb)|.

Notice that they are incompatible with each other, at least if there are any
a, b with |VM(Pa) − VM(Pb)| = 1

2 .
Option (i) is the one we mentioned in Sect. 2.1, as an example constraint.

According to this option that Vw(Pa∧a ∼P b) = 1 does not force it to be the case
that Vw(Pb) = 1. In Sect. 2.1 this was used to account for the nontransitivity
of the logic st. For one of the logics discussed below, however, we will adopt
option (ii).

Making use of facts and truth-makers, this means that we should assume that
T (a ∼P b) = {{Pa,Pb}, {Pa,Pb}} and F (a ∼P b) = {{Pa,Pb}, {Pa,Pb}}.
Notice that if Vw(Pa) = 1 and Vw(a ∼P b) = 1, it follows that Vw(Pb) = 1.
To see this using facts, observe that from Vw(Pa) = 1, it follows that Pa ∈ w
and Pa ̸∈ w. Because a ∼P b is true and not false, it follows that Pb ∈ w and
Pb ̸∈ w, and thus that Vw(Pb) = 1.3

2.3 Tolerance and Inference Relations

Our pragmatic interpretation rule can be included in the definition of logical
consequence to try to overcome the limitations we pointed out above about the
assertability of the tolerance formula in st∼. Consider, in particular, the following
notion of pragmatic consequence, |=prt, that goes from pragmatically strongest
to tolerant (see Cobreros et al. 2015):

• φ |=prt ψ iff PRAG(φ) ⊆ [[ψ]]t.

Thus, for inference we take into account what is (pragmatically) meant by
the premise. The fact that we look at what was meant by the premise means
that, even though φ ∧ ¬φ |=prt φ, it does not hold that φ ∧ ¬φ |=prt ψ. Thus,
explosion is not valid. In this sense, prt-entailment is a type of paraconsistent
entailment relation. Notice, moreover, that if we extend the language with our
similarity relation, our new consequence relation |=prt

∼ validates the tolerance
formula just as much as |=st

∼ did.
How should we extend |=prt so as to allow for multiple premises? This is

somewhat tricky. The first thought that comes to mind is the following:

• Γ |=prt φ iffdf
⋂

γ∈Γ PRAG(γ) ⊆ [[φ]]t

One shortcoming of that definition, however, is that the resulting notion of
consequence fails the adjunction property (the property that φ,ψ |= χ provided
φ ∧ ψ |= χ). In order to avoid that problem, we introduce the following variant
on that definition. We restrict attention to finite sets of premisses, and say that

3 To be sure, we could make use of truth-makers as well to implement the analysis of
similarity relation in (i). To do so, however, is somewhat involved, and we won’t go
into that here.
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a finite set of premisses Γ entails φ provided the pragmatic meaning of the
conjunction of the premisses entails the tolerant meaning of the conclusion. We
note

∧
Γ the conjunction of the premisses in Γ , and call Prt the corresponding

notion of validity, to distinguish it from the former:

• Γ |=Prt φ iffdf PRAG(
∧

Γ ) ⊆ [[φ]]t

Notice that if we extend the language with our similarity relation, our new
consequence relation |=Prt

∼ validates the tolerance formula just as much as |=st
∼

did. The fact that we look at what was meant by the premisses means that, even
though φ,¬φ |=Prt φ, it does not hold that φ,¬φ |=Prt ψ. Thus, explosion is
not valid. In this sense, Prt-entailment is a type of paraconsistent entailment
relation, just like LP.

Distinctive about |=Prt are the following three properties: (i) conjunction
elimination is valid, which implies that p∧¬p |=Prt p; (ii) |=Prt

∼ is nontransitive,
if based on similarity relation (i); and (iii) it is nonmonotonic. As for (ii), even
if both Pa and a ∼P b have value 1, it is required that Pb have at least value 1

2 ,
but not that it have value 1. As for (iii), in contrast with |=st

∼ , the notion |=Prt
∼

is nonmonotonic in the sense that if φ1 |=Prt
∼ χ, it might still be the case that

φ1,φ2 ̸|=Prt
∼ χ. In particular, Pa, a ∼P b |=Prt

∼ Pb, but Pa, a ∼P b,¬Pa ̸|=Prt
∼

Pb.
There are reasons for which one might be unhappy with |=Prt, however.

We argued in Sects. 1 and 2 that nontransitivity and nonmonotonicity might be
desirable features to account for vagueness. One might wonder, however, whether
we need both of these properties. Second, if pragmatic interpretation captures
what is meant by the speaker, one might wonder whether either conjunct can
be inferred from the premisse Pa ∧ ¬Pa. With this sentence the speaker wants
to impart that a is borderline tall. But if a conjunct like ‘Pa’ is asserted alone,
it is pragmatically interpreted to mean that a is strictly tall, and thus that a
is not borderline tall. If we want a consequence relation capturing what can be
asserted on the basis of antecedent assertions, the inference from Pa ∧ ¬Pa to
Pa should not be valid according to such a relation (see Alxatib and Pelletier
2011).

To account for the latter type of consequence relation we therefore define the
following inference relation (from Pragmatic to Pragmatic interpretation), again
restricting ourselves to finite sets of premisses:

• Γ |=PrPr φ iffdf PRAG(
∧

Γ ) ⊆ PRAG(φ)

Thus, for inference we take into account what is (pragmatically) meant by the
premisses and by the conclusion. It follows that |=PrPr does not satisfy conjunc-
tion elimination: in particular, p ∧ ¬p ̸|=PrPr p. Even though φ ∧ ψ ̸|=PrPr φ
for arbitrary φ and ψ, still p ∧ q |=PrPr p. Important for the analysis of vague-
ness is that (p ∧ ¬p) ∨ q ̸|=PrPr q. Similarly, φ ∧ ¬φ !PrPr ψ, that is, explosion
is not valid. In this sense, PrPr-entailment is again a type of paraconsistent
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entailment relation, just like Prt. Likewise, the tolerance inference is valid:
Pa, a ∼P b |=PrPr

∼ Pb, on either of the two interpretations of the similarity rela-
tions discussed in the previous section. Again, PrPr is nonmonotonic for even
as φ1 |=Prt χ, it can happen that φ1,φ2 ̸|=PrPr χ. This is already clear from the
fact that even though p |=PrPr p, we have that p,¬p !PrPr p. And in context of
soritical reasoning, Pa, a ∼P b |=PrPr

∼ Pb, but Pa, a ∼P b,¬Pa ̸|=PrPr
∼ Pb.

3 Comparisons

With the machinery introduced in Sect. 2 we have come to define three different
consequence relations: |=st, |=Prt and |=PrPr. In Sect. 2.2 we presented a way to
capture similarity relations, in order to be able to express tolerance. In these
logics tolerance is internalized since, in fact, the inference from ‘Pa’ and ‘a ∼P b’
to ‘Pb’ is valid. In this section we review how these logics deal with sorites
arguments.

The logic st is based on the idea that premises and conclusions of an argument
need not be subject to equal standards of satisfaction. If the premises of an
argument are true to some strict standard, it suffices for validity if the conclusion
is true to some less strict standard. Intuitively, this will lead to breaches of
transitivity and this is precisely what happens, according to this logic, in sorites
arguments.

The logic Prt combines two features: pragmatic interpretation for the
premises and tolerance for the conclusion. If the premises of an argument are
classically satisfiable, the argument is Prt-valid just in case it is st-valid. When
the premises are not classically satisfiable, pragmatic interpretation enters the
scene. The logic is nontransitive, as we would expect by its affinities with st. It
is also nonmonotonic as pragmatic interpretation of the premises will change the
range of models.

The logic PrPr, like the previous ones, depends on the existence of different
standards of satisfaction. This time however, the driving idea for PrPr is that
the validity of an argument should be evaluated in connection with those models
that provide the highest standards of satisfaction compatible with the statements
contained in the premises and in the conclusion. Intuitively, that the set of models
vary with what is in the premises or in the conclusion will lead to breaches of
monotonicity and this is precisely what happens, according to this logic, in sorites
arguments.

Hence, we have outlined three distinct consequence relations: st, Prt, and
PrPr. Of these, the first is monotonic but nontransitive, the second is both
nonmonotonic and nontransitive, and the third is nonmonotonic but transitive.
All validate tolerance, in both its theorem and argument forms. So each gives
a different approach to capturing tolerance, and each allows the soft status of
tolerance to be recognized by failing to obey the full budget of usual structural
rules. Which consequence relation, then, do we recommend?

None, or all, depending on how our recommendation will be understood.
None of these consequence relations captures what we take to be the full story
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in play with vague predicates; each is only one window on the underlying phe-
nomena. In particular, we have offered a nonstandard (but reasonably familiar)
model-theoretic semantics, on which the models involve two distinct notions of
satisfaction, plus a pragmatic story involving van-Fraassen-style truthmakers
and a particular bias towards stronger interpretations. No single consequence
relation will capture the full texture of this story, but each can reflect something
important about it.

For example, consider the data reported by Alxatib and Pelletier (2011),
where some participants accept the claim that a borderline case is both tall and
not tall, while rejecting the claim that he is tall and rejecting the claim that he is
not tall. That is, there are situations in which these participants accept Ta∧¬Ta
but reject both Ta and ¬Ta. This suggests that a consequence relation in which
Ta∧¬Ta does not entail either Ta or ¬Ta may capture some patterns in these
participants’ judgments; indeed, the relation PrPr invalidates these arguments.

Importantly, however, we do not hold up PrPr for this use simply because its
pattern of entailments tracks (some) speakers’ behavior. We have in fact offered
a model of the pragmatic processes underlying these speaker judgments, and it
is PrPr that is sensitive to the outputs of this model both in its premises and
in its conclusions. Since speaker judgments are sensitive to pragmatic processes,
we predict that speakers will judge in ways that accord with PrPr-validity.

On the other hand, it is hard not to think that the classical tradition is on
to something, in taking conjunctions to entail their conjuncts, and in other ways
besides.PrPr, of course, does not reflect this; there are cases inwhich conjunctions
are correctly assertible without either of their conjuncts being so. But since st val-
idates every classically-valid argument, we have a story available about just what
it is that classical logic gets right: any classically-valid argument whose premises
are strictly satisfied must have some conclusion that is tolerantly satisfied.

Again, though, we do not hold up st for this use simply because it agrees with
classical logic. Rather, st is fully semantic, involving only the notions of strict
and tolerant satisfaction; the pragmatic part of our apparatus does not enter
into it. Classical logic, of course, is much more plausible as a logic for semantics
than as a logic for pragmatics;4 the unified picture we have given respects that.

The logic Prt, finally, gives a picture about an interesting mixed phenom-
enon: when the premises of a Prt-valid argument are correctly assertible, then
some conclusion must be at least tolerantly satisfied.

We have given the raw materials to define nine different (two-sided) conse-
quence relations. None of these is itself the full story; they all reveal different
interactions between strict satisfaction, tolerant satisfaction, and the pragmatic
processes we have outlined. Some, like K3, fail to validate tolerance in any form;
it is part of our theory, then, that tolerance (the formula) is not always strictly
satisfied, and that the tolerance argument is not guaranteed to preserve strict
satisfaction. Overall, then, our approach not only explains how tolerance can be
valid without the sorites wreaking disaster, it also gives a detailed picture of the
ways in which tolerance is valid.

4 The point goes back at least to Grice (1967).
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4 Outlook

To finish this paper, we will suggest that by making use of our rule of pragmatic
interpretation PRAG, and the consequence relation |=PrPr we can account for
a pragmatic solution to the sorites paradox, and solve an expressive limitation
problem for the theory of transparent truth.

According to this radical pragmatic solution to the problem (Gaifman 2010;
Pagin 2010, 2011; Rayo 2010 and van Rooij 2010, arguably all based on Wittgen-
stein 1953), we can appropriately use a predicate P in a context if and only if
it helps to clearly demarcate the set of objects that have property P from those
that do not (the gap-hypothesis). This solution seems natural: the division of the
set of all relevant objects into those that do have property P and those that do
not is (i) easy to make and (ii) worth making. In those circumstances, the toler-
ance principle (∀x, y((Px ∧ x ∼P y) → Py)) will not give rise to inconsistency,
but serves its purpose quite well. Only in exceptional situations — i.e., when we
are confronted with long sequences of pairwise indistinguishable objects — do
things go wrong.

Unfortunately, there is a major problem with this approach: the gap hypoth-
esis seems too strong: Even if there is no clear demarcation between the bigger
and the smaller persons of the domain, certainly the tallest person can be called
‘tall’. Thus, the gap-hypothesis doesn’t seem to allow for such exceptional sit-
uations. Fortunately, it does, if we make use of our nonmonotonic consequence
relation |=PrPr. Notice first that the following holds: Px,¬Py |=PrPr x ̸∼P y.
This basically says that if we have a sequence going from truth value 1 to 0,
you expect this to be due to a gap (a pair xi, xj such that xi ̸∼P xj). Sim-
ilarly, it holds that if you explicitly say that x ∼P y (and do not say much
more) then you expect that Px and Py have the same truth value. Still, this
expectation can be cancelled if it is explicitly said that another individual in the
transitive closure of the similarity relation (of course, the similarity relation is
only transitively closed with respect to strict truth) doesn’t have property P .
This cancellation holds if we use our nonmonotonic consequence relation |=PrPr.
Thus, Px1,¬Pxn, x1 ∼P x2, · · · , xn−1 ∼P xn ̸|=PrPr Pxn.

Consider, finally, the extension of the language with a transparent truth
predicate (and the possibility of self-reference). One can express within the lan-
guage the truth-conditions of sentences of that language. Unfortunately, this
normally also immediately gives rise to the Liar paradox. In Cobreros et al.
(2013) it is shown, however, that this problem can be solved, making use of the
non-transitive consequence-relation |=st. There, however, we had to put limits
on expressibility: paradox reappears if a sentence can say that it is, e.g. strictly
true.

Is there perhaps a way of communicating that a sentence is only true or
only false without explicitly saying it? Priest (2006) proposes that to commu-
nicate that a sentence is ‘only true’ or ‘only false’, a speaker either makes use
of an independent speech act of denial (or rejection), or relies on a conversa-
tional implicature. In this paper we can suggest the latter: the pragmatic rea-
soning from the assertion that φ is true, to the conclusion that φ is only true
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(and not also false) can be seen as an implicature, and immediately follows from
the pragmatic interpretation of φ as here proposed.
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