Position-theoretic semantics and entailment

David Ripley

Monash University http://davewripley.rocks

Position-theoretic semantics

The first central notion of this talk is the position.

A position $[\Gamma \succ \Delta]$ is any pair of sets of sentences, with Γ the sentences asserted and Δ the sentences denied.

(Sentences, assertion, denial, all taken for granted here.)

We track each other's evolving positions in conversation, and our conversational moves depend on this.

('No, I didn't eat it' is only an appropriate response to someone who asserted that you ate it.)

The second central notion is disagreement between positions.

Positions *P* and *Q* disagree when one person's adopting *P* and another's adopting *Q* would constitute a disagreement between those people.

> I'll write $P \frown Q$ to indicate P disagrees with Q.

Some boring notation:

Subposition: $[\Gamma \succ \Delta] \sqsubseteq [\Sigma \succ \Theta] \quad \text{iff}_{df} \quad \Gamma \subseteq \Sigma \text{ and } \Delta \subseteq \Theta$

Position union: $[\Gamma \succ \Delta] \sqcup [\Sigma \succ \Theta] =_{df} [\Gamma \cup \Sigma \succ \Delta \cup \Theta]$

Some more interesting notation:

Self-disagreement:

$$[\Gamma \vdash \Delta] \quad \text{iff}_{df} \quad [\Gamma \succ \Delta] \frown [\Gamma \succ \Delta] \qquad \qquad P^{\vdash} \quad \text{iff}_{df} \quad P \frown P$$

Little positions: + $\phi =_{df} [\phi \succ] - \phi =_{df} [\succ \phi]$

Disagreement range / equivalence: $\hat{P} =_{df} \{R|P \frown R\}$ $P \simeq Q \quad \text{iff}_{df} \quad \hat{P} = \hat{Q}$

```
Assumption 1: monotonicity
If P \sqsubseteq P' and Q \sqsubseteq Q' and P \frown Q,
then P' \frown Q'.
```

It follows that if $P \frown Q$, then $(P \sqcup Q)^{\vdash}$.

```
Assumption 2: disaggregation
If (P \sqcup Q)^{\vdash}, then P \frown Q.
```

With both assumptions in place, we can reduce disagreement to self-disagreement:

$P \frown Q$ iff $(P \sqcup Q)^{\vdash}$

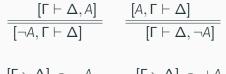
This is of technical convenience, but shouldn't be overstated.

It is disagreement is directly tied to conversational actions, and we might want to question these assumptions.

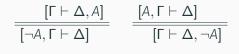
We can build a compositional semantics in these terms, rather than, eg, truth, falsity, warrant, inference, etc.

Work by way of assertion and denial conditions, understood as conditions under which assertions and denials disagree.

$$\frac{[\Gamma \vdash \Delta, A]}{[\neg A, \Gamma \vdash \Delta]} - \frac{[A, \Gamma \vdash \Delta]}{[\Gamma \vdash \Delta, \neg A]}$$

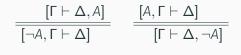


$$\frac{[\Gamma \succ \Delta] \frown \neg \neg A}{[\Gamma \succ \Delta] \frown \neg \neg A} = \frac{[\Gamma \succ \Delta] \frown \neg \neg A}{[\Gamma \succ \Delta] \frown \neg \neg A}$$



$[\Gamma \succ \Delta] \frown -A$	$[\Gamma \succ \Delta] \frown + A$
$[\Gamma \succ \Delta] \frown + \neg A$	$[\Gamma\succ\Delta]\frown\neg\neg A$

$$\widehat{+\neg A} = \widehat{-A} \qquad \widehat{-\neg A} = \widehat{+A}$$



$[\Gamma \succ \Delta] \frown -A$	$[\Gamma \succ \Delta] \frown + A$
$[\Gamma \succ \Delta] \frown + \neg A$	$[\Gamma \succ \Delta] \frown \neg\neg A$

$$\widehat{+\neg A} = \widehat{-A} \qquad \widehat{-\neg A} = \widehat{+A}$$

$$-A \simeq + \neg A + A \simeq - \neg A$$

$$\frac{[A, B, \Gamma \vdash \Delta]}{[A \land B, \Gamma \vdash \Delta]} \quad \frac{[\Gamma \vdash \Delta, A] \quad [\Gamma \vdash \Delta, B]}{[\Gamma \vdash \Delta, A \land B]}$$

$$\frac{[A, B, \Gamma \vdash \Delta]}{[A \land B, \Gamma \vdash \Delta]} \quad \frac{[\Gamma \vdash \Delta, A] \quad [\Gamma \vdash \Delta, B]}{[\Gamma \vdash \Delta, A \land B]}$$
$$\frac{[\Gamma \succ \Delta] \frown [A, B \succ]}{[\Gamma \succ \Delta] \frown -A} \quad \frac{[\Gamma \succ \Delta] \frown -B}{[\Gamma \succ \Delta] \frown -A \land B}$$

$$\frac{[A, B, \Gamma \vdash \Delta]}{[A \land B, \Gamma \vdash \Delta]} = \frac{[\Gamma \vdash \Delta, A] \quad [\Gamma \vdash \Delta, B]}{[\Gamma \vdash \Delta, A \land B]}$$

$$\frac{[\Gamma \succ \Delta] \frown [A, B \succ]}{[\Gamma \succ \Delta] \frown +A \land B} = \frac{[\Gamma \succ \Delta] \frown -A}{[\Gamma \succ \Delta] \frown -A \land B}$$

$$\widehat{+A \land B} = \widehat{[A, B \succ]} = \widehat{-A \land B} = \widehat{-A \cap -B}$$

$$\frac{[A, B, \Gamma \vdash \Delta]}{[A \land B, \Gamma \vdash \Delta]} = \frac{[\Gamma \vdash \Delta, A] \quad [\Gamma \vdash \Delta, B]}{[\Gamma \vdash \Delta, A \land B]}$$
$$\frac{[\Gamma \succ \Delta] \frown [A, B \succ]}{[\Gamma \succ \Delta] \frown (-A \land B)} = \frac{[\Gamma \succ \Delta] \frown (-A \land B)}{[\Gamma \succ \Delta] \frown (-A \land B)}$$
$$\widehat{+A \land B} = \widehat{[A, B \succ]} = \widehat{(-A \land B)} = \widehat{(-A \land B)}$$

 $+A \land B \simeq [A, B \succ]$

What's key in this approach is just which positions disagree.

Models can show non-disagreement, but the models aren't the point.

Proofs can show disagreement, but the proofs aren't the point.

If disagreement reduces to self-disagreement, then everything is settled by ⊢.

The formal tools of most direct use are thus consequence-theoretic.

Consequence relations themselves matter, not any particular way of determining them.

Can this do what we want a semantics to do?

Dowty, Wall, Peters 1981:

"In constructing the semantic component of a grammar, we are attempting to account...[for speakers'] judgements of synonymy, entailment, contradiction, and so on" (2, emphasis added).

Can this do what we want a semantics to do?

Dowty, Wall, Peters 1981:

"In constructing the semantic component of a grammar, we are attempting to account...[for speakers'] judgements of synonymy, entailment, contradiction, and so on" (2, emphasis added).

A problem: entailment

There might seem to be an easy path to entailment: say that Γ entails A iff $[\Gamma \vdash A]$

If some controversial assumptions hold, I'll argue, this view is extensionally right.

But even if this is so, it's more or less a coincidence.

Steinberger (2011):

"Take the example of the classical theoremhood of the law of the excluded middle. [This] would have to be rendered as 'It is incoherent to deny $A \lor \neg A$ '. But surely this is not what is intended; even the intuitionist can happily agree that it is incoherent to deny (every instance of) $A \lor \neg A$. [We need] a way of expressing that $A \lor \neg A$ can always be correctly asserted" (353).

 $[\Gamma \vdash A] \text{ just says:} \\ [\Gamma \succ A] \text{ disagrees with itself.}$

If anything, it's a prohibition, a ruling out. But entailment should enable us to go on.

In the limiting case of empty Γ , it should ensure that *A* is assertible.

 $[\vdash A]$ doesn't do that.

Or: if truth and falsity are projections from assertion and denial,

then $[\Gamma \vdash A]$ just says: Γ can't be true while A is false.

But entailment should connect truth to truth.

In the limiting case of empty Γ , it should ensure that A is true.

 $[\vdash A]$ doesn't do that.

A solution: implicit assertion

Recall that $P \simeq Q$ iff $\hat{P} = \hat{Q}$

As far as disagreements go, equivalent positions are just the same.

This means an adopter of *P* has the same options open for going on as an adopter of *Q* does.

Say that a position *P* implicitly asserts A iff: $P \simeq P \sqcup +A$

A is implicitly asserted when adding a genuine assertion of A wouldn't add any new disagreements.

(Mutatis for implicit denial, but that won't play a role here.)

Implicit assertion is a broad notion, subsuming assertion proper.

$([A, \Gamma \succ \Delta] \sqcup + A \text{ is just } [A, \Gamma \succ \Delta] \text{ again.})$

Implicit assertion can help us fill the role of entailment.

Write $P \Vdash^+ A$ to indicate that P implicitly asserts A.

If $P \Vdash^+ A$, when someone has already at least adopted P, they change nothing by going on to assert A. Implicit assertion is monotonic:

If $P \sqsubseteq Q$ and $P \Vdash^+ A$, then $Q \Vdash^+ A$ too.

Proof sketch:

Always $\widehat{Q} \subseteq \widehat{Q \sqcup + A}$, so we only need to show the converse.

```
Suppose, then, that Q \sqcup +A \frown R.
```

```
Since P \sqsubseteq Q, Q is P \sqcup S for some S, so P \sqcup S \sqcup + A \frown R.
```

```
This means P \sqcup + A \frown R \sqcup S.
```

But *P* implicitly asserts *A*, so $P \frown R \sqcup S$.

Finally, this gives $P \sqcup S \frown R$, which is to say $Q \frown R$.

Implicit assertion has other structural properties we might expect of entailment.

For any A, we have $+A \Vdash^+ A$

If $P \Vdash^+ A$ and $+A \sqcup P \Vdash^+ B$, then $P \Vdash^+ B$ Suppose our earlier theory of conjunction's assertion conditions: $\widehat{+A \land B} = \widehat{[A, B \succ]}.$

Then $[A, B \succ] \Vdash^+ A \land B$.

Here's why:

Suppose $[A, B, A \land B \succ] \frown R$; that is, that $+A \land B \sqcup [A, B \succ] \frown R$.

```
Then +A \wedge B \frown R \sqcup [A, B \succ].
```

By the assertion conditions, $[A, B \succ] \frown R \sqcup [A, B \succ]$.

And so $[A, B \succ] \frown R$.

Any position asserting A and B implicitly asserts $A \wedge B$.

Or suppose that $[\succ] \Vdash^+ A$.

If $[\succ]$ implicitly asserts A, then every position does.

If this is so, assertions of A are free; they close off no options at all, for anyone.

> This is just what we were after: a permissive notion.

Entailment and consequence

Hmmm

Getting to $[A, B_{\succ}] \Vdash^+ A \land B$ assumed only $+A \land B = [A, B_{\succ}]$. plus monotonicity and disaggregation.

> This is not enough to show $[A, B \vdash A \land B]$; we'd want in addition that $[A \land B \vdash A \land B]$, which does not follow from anything so far.

(Entailment is reflexive, but consequence may not be!)

So we don't have an implication from $[\Gamma \succ \Delta] \Vdash^+ A$ to $[\Gamma \vdash \Delta, A]$

Hmmm

There is also no implication in general from $[\Gamma \vdash \Delta, A]$ to $[\Gamma \succ \Delta] \Vdash^+ A$.

Suppose A is such that $+A \frown [\Gamma \succ \Delta]$ and $-A \frown [\Gamma \succ \Delta]$. (Maybe $[\Gamma \succ \Delta]$ has it that A attributes a vague predicate to one of its borderline cases.)

And suppose there is some Q with $[\Gamma \succ \Delta] \not \sim Q$.

Then $[\Gamma \vdash \Delta, A]$ but $[\Gamma \succ \Delta] \not\Vdash^+ A$.

So in general $[\Gamma \vdash \Delta, A]$ and $[\Gamma \succ \Delta] \Vdash^+ A$ are independent claims.

However, if disagreement obeys certain properties, then these collapse.

If $[A \vdash A]$ and $[\Gamma \succ \Delta] \Vdash^+ A$, then $[\Gamma \vdash \Delta, A]$.

If you'd self-disagree by denying and asserting A, then you'd self-disagree by denying A if you've implicitly asserted it.

If $[\Gamma \vdash \Delta, A]$ and $[A, \Gamma \vdash \Delta]$ implies $[\Gamma \vdash \Delta]$,

and $[\Gamma \vdash \Delta, A]$, then $[\Gamma \succ \Delta] \Vdash^+ A$.

If disagreeing with both +A and -A means self-disagreeing, then if you disagree with -A you've implicitly asserted it.

So if we assume \vdash obeys identity and cut, then we get $[\Gamma \succ \Delta] \Vdash^+ A$ iff $[\Gamma \vdash \Delta, A]$.

But still this is just an extensional match!

Steinberger's point stands: what we want from entailment is some permissive, positive status.

Implicit assertion provides this, using only the raw materials of positions and disagreement.

How this is connected to consequence is a question about how disagreement works.