Proabilistic consequence relations

Paul Égré and David Ripley

paulegre.free.fr and davewripley.rocks

イロン イロン イヨン イヨン

Table of contents

- 1. Setup
- 2. Material consequence
- 3. Preservation consequence
- 4. Symmetric consequence
- 5. Conclusion

э

Section 1

Setup

2

- \bullet The language ${\cal L}$ is a classical propositional language.
- An *argument* is $\Gamma \succ \Delta$, where Γ, Δ are *finite* sets of sentences.

Setup

- \models_{CL} is classical validity.
- A probability assignment is a function $Pr: \mathcal{L} \rightarrow [0,1]$ such that:
 - $Pr(\top) = 1$, and
 - if $A \vDash_{\mathsf{CL}} \neg B$, then $Pr(A \lor B) = Pr(A) + Pr(B)$

<ロ> <四> <四> <四> <三</p>

The idea is to treat probability assignments like we treat logical valuations.

This has been done before (Adams, Knight, Paris, others), but not a ton.

Plus, all previous work that we know of is ${\rm SET}\mbox{-}{\rm FMLA},$ which obscures some important distinctions.

э

イロン イ団 とく ヨン イヨン

Setup

Upsets:

An *upset* is some set $\alpha \subseteq [0,1]$ such that:

- $1 \in \alpha$ and $0 \notin \alpha$, and
- if $x \in \alpha$ and $x \leq y \in [0, 1]$, then $y \in \alpha$.

A choice of upset is a choice of which probabilities are "high enough".

Open and closed:

- Every upset is either [x, 1] or (x, 1] for some x ∈ [0, 1]; that x is the upset's threshold.
- In the first case the upset is *closed*; in the second *open*.

A *counterexample notion* is a three-place relation between upsets, probability assignments, and arguments.

Parameterized by an upset, it says which assignments count as counterexamples to which arguments.

Given such a notion and an upset, we get a set of arguments to count as valid: the arguments such that no assignment is a counterexample to them.

イロト 不得 トイヨト イヨト

- material consequence,
- preservation consequence,
- symmetric consequence.

3

イロン イヨン イヨン イヨン

Section 2

Material consequence

2

イロン 不問と 不良と 不良とう

Definition:

Given an upset α , let Pr be an α -material counterexample to $\Gamma \succ \Delta$ iff: $Pr(\bigwedge \Gamma \supset \bigvee \Delta) \notin \alpha$.

 $\Gamma \succ \Delta$ is α -materially valid (written $\Gamma \vDash_{\alpha}^{m} \Delta$) when no *Pr* is an α -material counterexample to it.

That is, a material counterexample to an argument is a Pr where the material-conditional version of the argument does not have a high enough probability.

Iff there is no such Pr, then the argument is materially valid.

イロト 不得 トイヨト イヨト

\models^{m}_{α} is \models_{CL}

Suppose $\Gamma \vDash_{\mathsf{CL}} \Delta$. Then $\vDash_{\mathsf{CL}} \bigwedge \Gamma \supset \bigvee \Delta$. So for any Pr, α , we have $Pr(\bigwedge \Gamma \supset \bigvee \Delta) = 1 \in \alpha$.

Suppose $\Gamma \not\models_{\mathsf{CL}} \Delta$. Then $\not\models_{\mathsf{CL}} \Lambda \Gamma \supset \bigvee \Delta$. So there is some Pr where $Pr(\Lambda \Gamma \supset \bigvee \Delta) = 0$, and $0 \notin \alpha$ for any α .

3

Material consequence, then, gives us a picture of how full $\rm Set-Set$ classical logic can fit together with uncertainty.

It does not, however, reflect this in its consequence relations: they're all exactly classical.

э

イロン イ団 とく ヨン イヨン

Section 3

Preservation consequence

2

Definition:

Given an upset α , let Pr be an α -preservation counterexample to $\Gamma \succ \Delta$ iff: $Pr[\Gamma] \subseteq \alpha$ and $Pr[\Delta] \subseteq [0,1] \setminus \alpha$.

 $\Gamma \succ \Delta$ is α -preservation valid (written $\Gamma \vDash_{\alpha}^{p} \Delta$) when no Pr is an α -preservation counterexample to it.

That is, a preservation counterexample to an argument gives a high-enough probability to every premise and a not-high-enough probability to every conclusion.

When $\Gamma \succ \Delta$ is preservation valid, if everything in Γ has a high enough probability, then so must something in Δ .

The SET-FMLA special case (Paris)

The Set-Fmla fragment of α -preservation consequence is well-behaved:

Strengthening to a classical limit

• If
$$\alpha \subseteq \beta$$
 and $\Gamma \vDash^{\boldsymbol{p}}_{\beta}$ A , then $\Gamma \vDash^{\boldsymbol{p}}_{\alpha}$ A

•
$$\Gamma \vDash_{\{1\}}^{p} A \text{ iff } \Gamma \vDash_{\mathsf{CL}} A$$

As the upset tightens, more and more arguments become valid, until at the limit of perfect certaintly classical logic is reached.

Consider our two extreme upsets: (0, 1] and $\{1\}$.

The ${\rm Set}\text{-}{\rm Set}$ preservation logics determined by these upsets are familiar, and neither is classical:

Super- and subvaluationistic consequence:

- $\models_{\{1\}}^{p}$ is supervaluationist consequence
- $\models_{(0,1]}^{p}$ is subvaluationist consequence

What it means that SET-FMLA reaches a 'classical' limit at $\{1\}$: just that supervaluationist consequence is SET-FMLA classical.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The neat strengthening we saw in the ${\rm SET}\mbox{-}{\rm FMLA}$ fragment is reversed in ${\rm FMLA}\mbox{-}{\rm SET}\mbox{:}$

Weakening as upsets tighten:

If $\alpha \subseteq \beta$ and $A \vDash^{p}_{\alpha} \Delta$, then $A \vDash^{p}_{\beta} \Delta$

And the overall picture is nothing neat or simple:

Incomparability:

For any α, β , the two consequence relations \vDash^{p}_{α} and \vDash^{p}_{β} are either identical or incomparable.

Definitions:

- Γ is α -satisfiable iff there is a Pr with $Pr[\Gamma] \subseteq \alpha$
- Δ is α -tautologous iff there is no Pr with $Pr[\Delta] \cap \alpha = \emptyset$

The role of rationals 1 (Knight):

For any finite Γ , there is some rational $x \in [0, 1]$ such that Γ is [x, 1]-satisfiable but not (x, 1]-satisfiable.

The role of rationals 2 (Fritz):

For any rational $x \in [0, 1]$, there is some finite Γ such that Γ is [x, 1]-satisfiable but not (x, 1]-satisfiable.

Results on sameness and difference:

- If x is irrational, then $\models_{[x,1]}^{p} = \models_{(x,1]}^{p}$
- If x is rational, then $\vDash_{[x,1]}^{p}$ is incomparable to $\vDash_{(x,1]}^{p}$
- If x is the threshold of α and y is the threshold of β and x ≠ y, then ⊨^p_α and ⊨^p_β are incomparable
- There are uncountably many distinct preservation consequence relations

イロト 不得 トイヨト イヨト 二日

To build intuitions for preservation consequence, three individually sufficient conditions for invalidity are useful:

Examples

It follows from these that:

- if $\alpha \neq \{1\}$, then $p, q \not\models_{\alpha}^{p} p \land q$;
- if $\alpha \neq \{1\}$, then $p \supset q, p \not\models_{\alpha}^{p} q$;
- for any α , $p, q \lor r \not\models^{p}_{\alpha} p \land q, r$

э

イロン イ団 とく ヨン イヨン

Conjecture:

We're led to a conjecture that, if true, would fully describe \models_{α}^{p} for all α other than the two extremes (which are already described):

Conjecture:

- If $(0,1] \neq \alpha \neq \{1\}$, then $\Gamma \vDash_{\alpha}^{p} \Delta$ iff:
 - Γ is α -unsatisfiable, or
 - Δ is α -tautologous, or
 - there is some $\gamma \in \Gamma$ and $\delta \in \Delta$ with $\gamma \models_{\mathsf{CL}} \delta$

Certainly any of these three conditions suffices for validity; the conjecture is that *every* validity comes this way.

Section 4

Symmetric consequence

2

Focusing just on the ${\rm Set}\text{-}{\rm FMLA}$ fragment of preservation consequence, there was a nice picture.

More and more arguments get valid as the upset narrows, until at the limit of $\{1\}$ we become classical.

Our $\operatorname{Set-Set}$ perspective made that fall apart, but it was a nice picture.

э

Mirror image

```
Given an upset \alpha, its mirror image \overline{\alpha} \subseteq [0,1] is \{x \mid 1 - x \in \alpha\}.
```

Definition:

Given an upset α , let Pr be an α -symmetric counterexample to $\Gamma \succ \Delta$ iff: $Pr[\Gamma] \subseteq \alpha$ and $Pr[\Delta] \subseteq \overline{\alpha}$.

 $\Gamma \succ \Delta$ is α -symmetric valid (written $\Gamma \vDash_{\alpha}^{s} \Delta$) when no Pr is an α -symmetric counterexample to it.

A symmetric counterexample to an argument gives a high-enough probability to every premise and a low-enough probability to every conclusion.

We assume that strigent standards for what's high enough come with stringent standards for what's low enough.

Again, we start with the extremes:

Extreme upsets:

•
$$\models_{\{1\}}^{S}$$
 is \models_{CL}
• $\Gamma \models_{(0,1]}^{S} \Delta$ iff either:
• there is some $\gamma \in \Gamma$ with $\gamma \models_{CL}$, or
• there is some $\delta \in \Delta$ with $\models_{CL} \delta$

This is something new: $unlike \models^p \models^s$ is sometimes classical, and $unlike \models^m \models^s$ isn't always classical.

э

イロン イヨン イヨン イヨン

We also get narrower upsets strengthening the consequence relation:

Narrower is stronger:

If $\alpha \subseteq \beta$ and $\Gamma \vDash^{\boldsymbol{S}}_{\beta} \Delta$, then $\Gamma \vDash^{\boldsymbol{S}}_{\alpha} \Delta$.

So the α -symmetric consequence relations form a clean linear order by strength.

Results on sameness and difference:

- If x is irrational, then $\models_{[x,1]}^{S} = \models_{(x,1]}^{S}$
- If x is rational, then $\vDash_{[x,1]}^{s} \neq \vDash_{(x,1]}^{s}$
- If x is the threshold of α and y is the threshold of β and $x \neq y$, then $\vDash_{\alpha}^{s} \neq \vDash_{\beta}^{s}$
- There are uncountably many distinct symmetric consequence relations

Relations to preservation:

• For any α, β , we have $\vDash_{\alpha}^{s} \neq \vDash_{\beta}^{p}$

• If
$$.5 \in \alpha$$
, then $\models_{\alpha}^{s} \subseteq \models_{\alpha}^{p}$;
and if $.5 \notin \alpha$, then $\models_{\alpha}^{p} \subseteq \models_{\alpha}^{s}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Closed upsets are limits:

- If $\Gamma \vDash_{[x,1]}^{s} \Delta$, then there is some $\alpha \supsetneq [x,1]$ such that $\Gamma \vDash_{\alpha}^{s} \Delta$
 - Another way to think about that: $\vDash_{[x,1]}^{\boldsymbol{S}} = \bigcup_{\alpha \supsetneq [x,1]} \vDash_{\alpha}^{\boldsymbol{S}}$
 - Another nother way: no argument becomes valid at a closed upset.

And $\{1\}$ is a closed upset.

So symmetric consequence really gives us what preservation consequence only appeared to: strengthening logics as upsets narrow, until classical logic is reached at {1}

イロト 不得 トイヨト イヨト 二日

Examples

•
$$p_1, \ldots, p_n \models_{\alpha}^{\mathbf{S}} \bigwedge p_i \text{ iff } \alpha \subseteq (\frac{n}{n+1}, 1]$$

• $p_1, p_1 \supset p_2, \ldots, p_{n-1} \supset p_n \models_{\alpha}^{\mathbf{S}} p_n \text{ iff } \alpha \subseteq (\frac{n}{n+1}, 1]$
• $p, q \lor r \models_{\alpha}^{\mathbf{S}} p \land q, r \text{ iff } \alpha \subseteq (\frac{3}{4}, 1]$

Indeed:

If $\Gamma \succ \Delta$ is classically valid and has no classically valid proper subargument, then $\Gamma \vDash_{\alpha}^{S} \Delta$ iff $\alpha \subseteq (\frac{n-1}{n}, 1]$, where *n* is the number of sentences in $\Gamma \succ \Delta$.

So bigger arguments can take longer to shake out,

but eventually any classically-valid argument gets caught as we narrow our upset.

イロト 不得 トイヨト イヨト

Section 5

Conclusion

Paul Egr	é and	David	Rip	ley
----------	-------	-------	-----	-----

・ロト ・四ト ・ヨト ・ヨト 三日

- There are lots of ways to define consequence relations from probability assignments; we've looked at three.
- Material consequence is always classical.
- Preservation consequence is never classical, but can be super- or subvaluational.
- Preservation consequence is also a bit messy in the middle.
- Symmetric consequence is classical at the limit, and gradually approaches that limit in a describable way.
 - (Also if $\alpha \neq \{1\}$ then \vDash_{α}^{s} is nontransitive xor nonreflexive.)

イロト 不得 トイヨト イヨト

Paul Égré and David Ripley