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Setup

The language L is a classical propositional language.
An argument is Γ � ∆, where Γ,∆ are finite sets of sentences.
�CL is classical validity.
A probability assignment is a function Pr : L → [0, 1] such that:

Pr(>) = 1, and
if A �CL ¬B, then Pr(A ∨ B) = Pr(A) + Pr(B)
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Setup

The idea is to treat probability assignments like we treat logical valuations.

This has been done before (Adams, Knight, Paris, others), but not a ton.

Plus, all previous work that we know of is Set-Fmla,
which obscures some important distinctions.
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Setup

Upsets:
An upset is some set α ⊆ [0, 1] such that:

1 ∈ α and 0 6∈ α, and
if x ∈ α and x ≤ y ∈ [0, 1], then y ∈ α.

A choice of upset is a choice of which probabilities are “high enough”.

Open and closed:
Every upset is either [x , 1] or (x , 1] for some x ∈ [0, 1];
that x is the upset’s threshold.
In the first case the upset is closed; in the second open.
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Setup

A counterexample notion is a three-place relation between upsets,
probability assignments, and arguments.

Parameterized by an upset, it says which assignments
count as counterexamples to which arguments.

Given such a notion and an upset, we get a set of arguments to count as valid:
the arguments such that no assignment is a counterexample to them.
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Setup

We consider three main counterexample notions:
material consequence,
preservation consequence,
symmetric consequence.
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Material consequence

Section 2

Material consequence
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Material consequence

Definition:
Given an upset α, let Pr be an α-material counterexample to Γ � ∆ iff:
Pr(

∧
Γ ⊃

∨
∆) 6∈ α.

Γ � ∆ is α-materially valid (written Γ �m
α ∆)

when no Pr is an α-material counterexample to it.

That is, a material counterexample to an argument
is a Pr where the material-conditional version of the argument
does not have a high enough probability.

Iff there is no such Pr , then the argument is materially valid.
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Material consequence

�m
α is �CL

Suppose Γ �CL ∆. Then �CL
∧
Γ ⊃

∨
∆.

So for any Pr , α, we have Pr(
∧

Γ ⊃
∨

∆) = 1 ∈ α.

Suppose Γ 6�CL ∆. Then 6�CL
∧
Γ ⊃

∨
∆.

So there is some Pr where Pr(
∧
Γ ⊃

∨
∆) = 0,

and 0 6∈ α for any α.
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Material consequence

Material consequence, then, gives us a picture
of how full Set-Set classical logic can fit together with uncertainty.

It does not, however, reflect this in its consequence relations:
they’re all exactly classical.
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Preservation consequence

Section 3

Preservation consequence
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Preservation consequence

Definition:
Given an upset α, let Pr be an α-preservation counterexample to Γ � ∆ iff:
Pr [Γ] ⊆ α and Pr [∆] ⊆ [0, 1] \ α.

Γ � ∆ is α-preservation valid (written Γ �p
α ∆)

when no Pr is an α-preservation counterexample to it.

That is, a preservation counterexample to an argument
gives a high-enough probability to every premise
and a not-high-enough probability to every conclusion.

When Γ � ∆ is preservation valid,
if everything in Γ has a high enough probability,
then so must something in ∆.
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Preservation consequence

The Set-Fmla special case (Paris)

The Set-Fmla fragment of α-preservation consequence is well-behaved:

Strengthening to a classical limit

If α ⊆ β and Γ �p
β A, then Γ �p

α A

Γ �p
{1} A iff Γ �CL A

As the upset tightens, more and more arguments become valid,
until at the limit of perfect certaintly classical logic is reached.
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Preservation consequence Extreme upsets

Consider our two extreme upsets: (0, 1] and {1}.

The Set-Set preservation logics determined by these upsets are familiar,
and neither is classical:

Super- and subvaluationistic consequence:

�p
{1} is supervaluationist consequence

�p
(0,1] is subvaluationist consequence

What it means that Set-Fmla reaches a ‘classical’ limit at {1}:
just that supervaluationist consequence is Set-Fmla classical.
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Preservation consequence Intermediate upsets

The neat strengthening we saw in the Set-Fmla fragment
is reversed in Fmla-Set:

Weakening as upsets tighten:

If α ⊆ β and A �p
α ∆, then A �p

β ∆

And the overall picture is nothing neat or simple:

Incomparability:

For any α, β, the two consequence relations �p
α and �p

β

are either identical or incomparable.
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Preservation consequence α-satisfiability

Definitions:
Γ is α-satisfiable iff there is a Pr with Pr [Γ] ⊆ α

∆ is α-tautologous iff there is no Pr with Pr [∆] ∩ α = ∅

The role of rationals 1 (Knight):
For any finite Γ, there is some rational x ∈ [0, 1]
such that Γ is [x , 1]-satisfiable but not (x , 1]-satisfiable.

The role of rationals 2 (Fritz):
For any rational x ∈ [0, 1], there is some finite Γ
such that Γ is [x , 1]-satisfiable but not (x , 1]-satisfiable.
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Preservation consequence Sameness and difference:

Results on sameness and difference:

If x is irrational, then �p
[x,1] = �p

(x,1]

If x is rational, then �p
[x,1] is incomparable to �p

(x,1]

If x is the threshold of α and y is the threshold of β and x 6= y ,
then �p

α and �p
β are incomparable

There are uncountably many distinct preservation consequence relations
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Preservation consequence But what are they like?

To build intuitions for preservation consequence,
three individually sufficient conditions for invalidity are useful:

If , then Γ 6�p
α ∆:

Γ 6�CL ∆; or
α 6= {1} and:

Γ is α-satisfiable,∨
∆ is not a classical tautology, and

there is no γ ∈ Γ with γ �CL
∨

∆; or
α 6= (0, 1] and:

∆ is not α-tautologous,∧
Γ is classically satisfiable, and

there is no δ ∈ ∆ with
∧

Γ �CL δ
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Preservation consequence But what are they like?

Examples

It follows from these that:

if α 6= {1}, then p, q 6�p
α p ∧ q;

if α 6= {1}, then p ⊃ q, p 6�p
α q;

for any α, p, q ∨ r 6�p
α p ∧ q, r
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Preservation consequence But what are they like?

Conjecture:

We’re led to a conjecture that, if true, would fully describe �p
α

for all α other than the two extremes (which are already described):

Conjecture:

If (0, 1] 6= α 6= {1}, then Γ �p
α ∆ iff:

Γ is α-unsatisfiable, or
∆ is α-tautologous, or
there is some γ ∈ Γ and δ ∈ ∆ with γ �CL δ

Certainly any of these three conditions suffices for validity;
the conjecture is that every validity comes this way.
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Symmetric consequence

Section 4

Symmetric consequence
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Symmetric consequence

Focusing just on the Set-Fmla fragment of preservation consequence,
there was a nice picture.

More and more arguments get valid as the upset narrows,
until at the limit of {1} we become classical.

Our Set-Set perspective made that fall apart,
but it was a nice picture.
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Symmetric consequence

Mirror image
Given an upset α, its mirror image α ⊆ [0, 1] is {x | 1 − x ∈ α}.

Definition:
Given an upset α, let Pr be an α-symmetric counterexample to Γ � ∆ iff:
Pr [Γ] ⊆ α and Pr [∆] ⊆ α.

Γ � ∆ is α-symmetric valid (written Γ �s
α ∆)

when no Pr is an α-symmetric counterexample to it.

A symmetric counterexample to an argument
gives a high-enough probability to every premise
and a low-enough probability to every conclusion.

We assume that strigent standards for what’s high enough
come with stringent standards for what’s low enough.
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Symmetric consequence Extreme upsets

Again, we start with the extremes:

Extreme upsets:
�s
{1} is �CL

Γ �s
(0,1] ∆ iff either:

there is some γ ∈ Γ with γ �CL, or
there is some δ ∈ ∆ with �CL δ

This is something new:
unlike �p �s is sometimes classical,

and unlike �m �s isn’t always classical.
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Symmetric consequence Ordering

We also get narrower upsets strengthening the consequence relation:

Narrower is stronger:
If α ⊆ β and Γ �s

β ∆, then Γ �s
α ∆.

So the α-symmetric consequence relations form a clean linear order by strength.
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Symmetric consequence Ordering

Results on sameness and difference:
If x is irrational, then �s

[x,1] = �s
(x,1]

If x is rational, then �s
[x,1] 6= �s

(x,1]

If x is the threshold of α and y is the threshold of β and x 6= y ,
then �s

α 6= �s
β

There are uncountably many distinct symmetric consequence relations

Relations to preservation:

For any α, β, we have �s
α 6= �p

β

If .5 ∈ α, then �s
α ⊆ �p

α ;
and if .5 6∈ α, then �p

α ⊆ �s
α
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Symmetric consequence A classical limit for real this time

Closed upsets are limits:
If Γ �s

[x,1] ∆, then there is some α ) [x , 1] such that Γ �s
α ∆

Another way to think about that: �s
[x,1] =

⋃
α)[x,1] �

s
α

Another nother way: no argument becomes valid at a closed upset.

And {1} is a closed upset.

So symmetric consequence really gives us
what preservation consequence only appeared to:
strengthening logics as upsets narrow,
until classical logic is reached at {1}
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Symmetric consequence Examples

Examples

p1, . . . , pn �s
α

∧
pi iff α ⊆ ( n

n+1 , 1]
p1, p1 ⊃ p2, . . . , pn−1 ⊃ pn �s

α pn iff α ⊆ ( n
n+1 , 1]

p, q ∨ r �s
α p ∧ q, r iff α ⊆ ( 3

4 , 1]

Indeed:
If Γ � ∆ is classically valid and has no classically valid proper subargument,
then Γ �s

α ∆ iff α ⊆ ( n−1
n , 1],

where n is the number of sentences in Γ � ∆.

So bigger arguments can take longer to shake out,
but eventually any classically-valid argument gets caught as we narrow our upset.
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Conclusion

There are lots of ways to define consequence relations from probability
assignments; we’ve looked at three.
Material consequence is always classical.
Preservation consequence is never classical,
but can be super- or subvaluational.
Preservation consequence is also a bit messy in the middle.
Symmetric consequence is classical at the limit,
and gradually approaches that limit in a describable way.

(Also if α 6= {1} then �s
α is nontransitive xor nonreflexive.)
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Conclusion THANKS!

S(0, 1]

S{1}

P(0, 1] P{1}
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