
General elimination isn’t general enough

David Ripley

Monash University
https://davewripley.rocks



Introductions as definitions



Introductions as definitions The idea

Gentzen 1934:

“The introductions represent, as it were, the ‘definitions’
of the symbols concerned, and the eliminations
are…the consequences of these definitions.



Introductions as definitions The idea

A B∧I: A ∧ B
A∨Il : A ∨ B

B∨Ir : A ∨ B

A ∧ B∧El : A
A ∧ B∧Er : B

A ∨ B

[A]...
C

[B]...
C∨E: C



Introductions as definitions The idea

“Such [introduction] laws will
be ‘self-justifying’: we are
entitled simply to stipulate
[them], because by so doing we
fix…the meanings of the logical
constants that they govern”



Introductions as definitions The idea

“Plainly, the elimination rules
are not consequences of the
introduction rules in the
straightfoward sense of being
derivable from them; Gentzen
must therefore have had in
mind some more powerful
means of drawing
consequences”



Introductions as definitions The idea

“Plainly, the elimination rules
are not consequences of the
introduction rules in the
straightfoward sense of being
derivable from them; Gentzen
must therefore have had in
mind some more powerful
means of drawing
consequences”



General elimination



General elimination

Question:
Given introduction rules for a connective,

what elimination rules are justified?



General elimination Negri

“[W]hatever follows from the
sufficient grounds for deriv-
ing a formula must follow
from that formula…

[W]hatever follows from a for-
mula must follow from the
sufficient grounds for deriv-
ing the formula”



General elimination Read

“The introduction-rule not only shows
what is [sufficient for] the conclusion
but also [what is] necessary”



General elimination Moriconi & Tesconi

Moriconi & Tesconi:

“[I]t is quite natural to ask what consequences can be drawn from A,
given that A can be produced only by [certain] rules. The answer is:

we can draw all the consequences that we can draw from the
premisses of those rules”



General elimination Example: disjunction

A∨Il : A ∨ B
B∨Ir : A ∨ B

A ∨ B

[A]...
C

[B]...
C∨GE: C



General elimination Example: conjunction

A B∧I: A ∧ B

A ∧ B

[A], [B]︸ ︷︷ ︸...
C∧GE: C



Local soundness and completeness



Local soundness and completeness

Pfenning & Davies coin ‘local soundness’ and ‘local completeness’
for certain often-desired properties of rules.



Local soundness and completeness Local soundness

Local soundness means that all local peaks are reducible.

...
A

...
B∧I: A ∧ B

[A], [B]︸ ︷︷ ︸...
C∧GE: C

⇝

...
...

A, B︸ ︷︷ ︸...
C

GE guarantees this.



Local soundness and completeness Local soundness

When rules are locally sound,
the elimination rules are not “too strong”

Anything that can be proved by I and then E
can be proved directly

(Tonk famously violates local soundness)



Local soundness and completeness Local soundness

Given I rules for A, we can justify locally sound E rules for A:

Dummett again:
“The strategy…is that of all proof-theoretic justifications, namely, to
show that we can dispense with the rule up for justification: if we

have a valid argument for the premises of a proposed application of
it, we already have a valid argument, not appealing to that rule, for

the conclusion.”



Local soundness and completeness Local completeness

Local completeness means “we can apply the elimination rules to a
judgment to recover enough [to reintroduce] the original judgment”:

A ∧ B [A]1
∧GE1 : A

A ∧ B [B]2
∧GE2 : B∧I: A ∧ B

GE guarantees this, too.



Local soundness and completeness Local completeness

When rules are locally complete,
the elimination rules are not “too weak”

The elimination rules yield enough
to introduce the formula again



Local soundness and completeness Local completeness

Local completeness is maybe not required for justifying E rules,
but it pushes us to justify the strongest rules we can.



The list modality



The list modality From here

I’m going to argue that GE
is not always the best way to get elimination rules.

The argument proceeds by way of an example:
a unary modality ⋆, given by its introduction rules.

The GE rule for ⋆ is ok,
but we can do better.



The list modality Introduction rules

⋆Inil : A⋆
A A⋆

⋆Icons : A⋆



The list modality A redundancy?

⋆Inil : A⋆
A A⋆

⋆Icons : A⋆

⋆Icons might seem redundant in two separate ways:

• ⋆Inil already proves A⋆ for all A
• We can’t use ⋆Icons to prove anything we haven’t already proved



The list modality An example proof

[p]1
⋆Inil : q⋆

∧I: p ∧ q⋆
⋆Inil :

(p ∧ q⋆)⋆
⋆Icons:

(p ∧ q⋆)⋆
→ I1 : p→ (p ∧ q⋆)⋆



The list modality No redundancy

⋆Icons makes a real difference, by adding many more proofs.
They’re just not proofs of anything new.

If all we care about is provability rather than proofs,
then ⋆Icons is indeed redundant.

But if all we care about is provability,
we should be off this boat a long way back!



The list modality No redundancy

For the curious, though:

An argument has a proof in this system iff
replacing all A⋆s with ⊤ has a proof

in the base system.

The same will be true after we add elimination rules as well.



The list modality What’s this got to do with lists?

Say that a proof is canonical when:
it ends in an introduction rule

and its immediate subproofs are canonical.

Then a canonical proof of A ∧ B is a pair
of a canonical proof of A and a canonical proof of B.

This way lies the BHK intepretation
and the Curry-Howard correspondence.



The list modality Does anyone read these?

Canonical proofs of A⋆ are finite lists of canonical proofs of A:

⋆Inil : A⋆

...
A

⋆Inil : A⋆
⋆Icons: A⋆

...
A

...
A

⋆Inil : A⋆
⋆Icons : A⋆

⋆Icons: A⋆



The list modality Just an example

I’ve chosen lists as a simple example.

But the points to follow make sense
for inductively defined data types in general.



General elimination for lists



General elimination for lists The rule ⋆GE

General elimination for ⋆:

A⋆ C

[A], [A⋆]︸ ︷︷ ︸...
C

⋆GE: C



General elimination for lists General elimination: local soundness

It is locally sound:

⋆Inil : A⋆
...
C

[A], [A⋆]︸ ︷︷ ︸...
C

⋆GE: C

⇝
...
C

...
A

...
A⋆

⋆Icons: A⋆
...
C

[A], [A⋆]︸ ︷︷ ︸...
C

⋆GE: C

⇝

...
...

A, A⋆︸ ︷︷ ︸...
C



General elimination for lists General elimination: local completeness

and locally complete:

A⋆
⋆Inil : A⋆

[A] [A⋆]
⋆Icons: A⋆

⋆GE: A⋆



General elimination for lists Local soundness and completeness

Local soundness and completeness
mean that we can justify ⋆GE by appeal to the I rules,

and that ⋆GE lets us draw all the conclusions justifiable in this way.

What more could we want?



General elimination for lists Local soundness and completeness

If all we cared about was provability, we could stop.

But what we care about is proofs.

Local completeness tells us we have some proof
of every justifiable conclusion.

But what if we want every justifiable proof?



General elimination for lists Thinking ’bout lists

Given what finite lists are,
certain operations on them make sense.



General elimination for lists Thinking ’bout lists

For example, given a finite list π of proofs of A and a proof α of A,
we can determine a particular proof of A as follows:

If π is the empty list, we use α,
and if π is not empty, we use its head, its first element.



General elimination for lists Thinking ’bout lists

⋆GE lets us form a proof that ‘does’ this:
π
A⋆

α
A [A]

⋆GE: A



General elimination for lists Thinking ’bout lists

And given two finite lists π, ρ of proofs of A,
we can determine a particular finite list of proofs of A as follows:

If π is the empty list, we use ρ,
and if π is not empty, we use its tail.



General elimination for lists Thinking ’bout lists

⋆GE lets us form a proof that does this too:

π
A⋆

ρ

A⋆ [A⋆]
⋆GE: A⋆



General elimination for lists Thinking ’bout lists

So far so good.

But there are many natural operations on lists
that ⋆GE can’t give us.



General elimination for lists Appending

Given two finite lists π, ρ of proofs of A,
we can determine a particular finite list π ++ ρ

that is the concatenation of π then ρ.

Given what lists are, ++ is perfectly sensible.
But we can’t define ++ with just ⋆GE.



General elimination for lists Appending

The trouble is that ++ needs to recurse:

if π is empty, then π ++ ρ is ρ,
and if π is nonempty, then π ++ ρ is

⋆Icons of πh and (πt ++ ρ),
where πh, πt are π’s head and tail.

⋆GE lets us get to πh and πt,
but it doesn’t let us use ++ in defining ++.

We’d need a proof that was a proper part of itself.



General elimination for lists Recursion

The problem is general.

Finite lists are defined like this in order to support recursion;
most interesting operations on them are recursively defined.

(concatenation, reversing, adding a member to the end,
filtering, summing, taking every other member,

applying a function to each member,…)

But ⋆GE isn’t up to the job.



General elimination for lists Recursion

Recursive operations on lists are justified by what lists are,
and what lists are is fully defined by ⋆Inil, ⋆Icons.

⋆GE is locally sound, so justifiable.
And it’s locally complete, but still not strong enough.

It gives us all the conclusions justifiable from the I rules,
but not all the justifiable proofs.



How to do better



How to do better Catamorphisms



How to do better Paramorphic elimination

A⋆ C

[A], [A⋆]

, (C)

︸ ︷︷ ︸...
C

⋆GE: C

C is arbitrary, and might be A or A⋆;
in such cases, we need to keep track of how it’s discharged:

qua C or qua A/A⋆.



How to do better Paramorphic elimination

A⋆ C

[A], [A⋆], (C)︸ ︷︷ ︸...
C

⋆PE: C

C is arbitrary, and might be A or A⋆;
in such cases, we need to keep track of how it’s discharged:

qua C or qua A/A⋆.



How to do better Paramorphic elimination: local soundness

The ⋆Inil case of local soundness is as for ⋆GE:

⋆Inil : A⋆
...
C

[A], [A⋆], (C)︸ ︷︷ ︸...
C

⋆PE: C

⇝
...
C



How to do better Paramorphic elimination: local soundness

The ⋆Icons case is where the magic happens,
and why the discharge distinction is needed:

...
A

...
A⋆

⋆Icons : A⋆
...
C

[A], [A⋆], (C)︸ ︷︷ ︸...
C

⋆PE: C

...
A

...
A⋆

...
A⋆

...
C

[A], [A⋆], (C)︸ ︷︷ ︸...
C

⋆PE: C︸ ︷︷ ︸...
C



How to do better Paramorphic elimination: local completeness

Local completeness is basically as for ⋆GE,
but with a new version as well:

A⋆
⋆Inil : A⋆

[A] [A⋆]
⋆Icons : A⋆

⋆PE: A⋆



How to do better Paramorphic elimination: local completeness

Local completeness is basically as for ⋆GE,
but with a new version as well:

A⋆
⋆Inil : A⋆

[A] (A⋆)
⋆Icons: A⋆

⋆PE: A⋆



How to do better Translation

⋆Inil : A⋆
A A⋆

⋆Icons: A⋆

This is a language for building proofs of A⋆.

⋆PE let us translate this into a language for proofs of C
if we can translate each rule.

The translation of ⋆Icons gets access to the tail
both in the original and in translation.

C
A A⋆ C

C



How to do better Translation

...
A

...
A⋆

⋆Icons : A⋆
...
C

[A], [A⋆], (C)︸ ︷︷ ︸...
C

⋆PE: C

...
A

...
A⋆

...
A⋆

...
C

[A], [A⋆], (C)︸ ︷︷ ︸...
C

⋆PE: C︸ ︷︷ ︸...
C



How to do better What can we do now?

⋆PE gives us everything ⋆GE did immediately:
every application of ⋆GE is also an application of ⋆PE.

But unlike ⋆GE, ⋆PE lets us use the recursive structure of lists.

Because of this, we can use it to build proofs
that compute more functions on lists.



How to do better What can we do now?

π
A⋆

ρ

A⋆
[A] (A⋆)

⋆Icons : A⋆
⋆CE: A⋆

This proof represents π ++ ρ.
(Exercise: what would it do with [A⋆] instead?)



How to do better What can we do now?

This proof puts the proof α of A at the end of the list π:

π
A⋆

α
A

⋆Inil : A⋆
⋆Icons : A⋆

++:
A⋆

Call it π snoc α



How to do better What can we do now?

This proof reverses the list π:

π
A⋆

⋆Inil : A⋆
(A⋆) [A]

snoc:
A⋆

⋆PE: A⋆

(Exercise: what would it do with [A⋆] instead?)



How to do better What can we do now?

We can take every other element of a list with ⋆PE.

If we can apply a function to an argument,
we can map that function over lists with ⋆PE.

If we can sum two numbers,
we can sum a list of numbers with ⋆PE.

And so on.



The situation



The situation Two elimination rules

Given ⋆Inil and ⋆Icons,
we have two candidate elimination rules: ⋆GE and ⋆PE.

Both are locally sound, so give only justifiable conclusions.
Both are locally complete, so give all justifiable conclusions.

But they’re very different when we turn from provability to proof.
⋆PE gives many more proofs, including many important ones.



The situation General elimination isn’t enough

⋆PE is justified by the ⋆ I rules, I reckon.
But beyond that, what to make of this?

General elimination misses the target:
the rules it gives are sometimes too weak.



The situation Local soundness and completeness aren’t enough

Local soundness and completeness are too coarse
for this kind of investigation.

Local completeness just tells us we have enough conclusions,
leaving open that we’re missing many justifiable proofs.

(Local soundness seems to have the reverse problem:
it’s compatible with local soundness that we have
unjustifiable proofs of justifiable conclusions.)



The situation ???

What can replace local soundness and completeness, though?

How to tell when a proof is justifiable on the basis of I rules?

Does ⋆PE get all of them?


	Introductions as definitions
	The idea

	General elimination
	Negri
	Read
	Moriconi & Tesconi
	Example: disjunction
	Example: conjunction

	Local soundness and completeness
	Local soundness
	Local completeness

	The list modality
	From here
	Introduction rules
	A redundancy?
	An example proof
	No redundancy
	What's this got to do with lists?
	Does anyone read these?
	Just an example

	General elimination for lists
	The rule GE
	General elimination: local soundness
	General elimination: local completeness
	Local soundness and completeness
	Thinking 'bout lists
	Appending
	Recursion

	How to do better
	Catamorphisms
	Paramorphic elimination
	Paramorphic elimination: local soundness
	Paramorphic elimination: local completeness
	Translation
	What can we do now?

	The situation
	Two elimination rules
	General elimination isn't enough
	Local soundness and completeness aren't enough
	???


