
Core type theory

David Ripley

Monash University
http://davewripley.rocks



Core logic



Core logic What is it?

Core logic (aka ‘ intuitionistic relevant logic’)
is a system of logic devised and developed by Neil Tennant

over the last 40ish years.



Core logic What is it?

No, not that Neil Tennant

(At least I don’t think so.)



Core logic What is it?

No, not that Neil Tennant

(At least I don’t think so.)



Core logic What is it?

[φ]n

...
ψ

→In :
φ→ ψ

[φ]n

.../→I!n :
φ→ ψ

φ→ ψ φ

[ψ]n

...
θ

→E:
θ

[φ]n

.../¬In : ¬φ
¬φ φ

¬E: /

In→I and→E, discharge may be vacuous.
In→I! and ¬I, discharge must not be vacuous.



Core logic What is it?

As it stands, that’s a proof system for intuitionistic logic.

With the additional restriction that
major premises for elimination must be assumptions,

we get to core logic.

(Caveat: this isn’t exactly how Tennant does it.
His proofs are more restrictive.

But all the same things are provable.)



Core logic What is it?

Let an argument Γ � C be core valid iff:
there is a core proof of C whose open assumptions are all in Γ.

Then core validity is not closed under cut:
¬φ � φ→ ψ and φ→ ψ,φ � ψ are both core valid,

but ¬φ,φ � ψ is not.
Rather, ¬φ,φ � / is.



Core logic What is it?

Core validity is closely related to intuitionistic validity:

Results (Tennant):

• Γ ⊢Core / iff Γ ⊢Int ⊥
• If Γ ̸⊢ /, then Γ ⊢Int φ iff Γ ⊢ φ

The difference is in what follows from inconsistent premise sets.



Curry-Howard



Curry-Howard Types

The simply-typed lambda calculus encodes a theory of typed data
and functions on that data.

This is importantly connected to intuitionistic logic, via the
Curry-Howard correspondence.



Curry-Howard Types

Our types are atoms, or ⊥, or formed by→ from other types.

⊥ is interpreted as an empty type,

and φ→ ψ the type of functions
that take an input of type φ and give an output of type ψ.



Curry-Howard Terms

There are variables xφ, yφ, zφ, . . . of each type φ,

(variables are assumptions)

given terms Mφ→ψ and Nφ, there is (MNφ)ψ ,

(function application is modus ponens)

given a variable xφ and a term Mψ , there is (λx.M)φ→ψ ,

(function formation is conditional proof;
variable binding is discharging an assumption)

given a term M⊥, there is (explode M)φ.

(crying uncle is explosion)



Curry-Howard Terms

There are variables xφ, yφ, zφ, . . . of each type φ,
(variables are assumptions)

given terms Mφ→ψ and Nφ, there is (MNφ)ψ ,

(function application is modus ponens)

given a variable xφ and a term Mψ , there is (λx.M)φ→ψ ,

(function formation is conditional proof;
variable binding is discharging an assumption)

given a term M⊥, there is (explode M)φ.

(crying uncle is explosion)



Curry-Howard Terms

There are variables xφ, yφ, zφ, . . . of each type φ,
(variables are assumptions)

given terms Mφ→ψ and Nφ, there is (MNφ)ψ ,
(function application is modus ponens)

given a variable xφ and a term Mψ , there is (λx.M)φ→ψ ,

(function formation is conditional proof;
variable binding is discharging an assumption)

given a term M⊥, there is (explode M)φ.

(crying uncle is explosion)



Curry-Howard Terms

There are variables xφ, yφ, zφ, . . . of each type φ,
(variables are assumptions)

given terms Mφ→ψ and Nφ, there is (MNφ)ψ ,
(function application is modus ponens)

given a variable xφ and a term Mψ , there is (λx.M)φ→ψ ,
(function formation is conditional proof;

variable binding is discharging an assumption)

given a term M⊥, there is (explode M)φ.

(crying uncle is explosion)



Curry-Howard Terms

There are variables xφ, yφ, zφ, . . . of each type φ,
(variables are assumptions)

given terms Mφ→ψ and Nφ, there is (MNφ)ψ ,
(function application is modus ponens)

given a variable xφ and a term Mψ , there is (λx.M)φ→ψ ,
(function formation is conditional proof;

variable binding is discharging an assumption)

given a term M⊥, there is (explode M)φ.
(crying uncle is explosion)



Curry-Howard Reduction

Any term of the form ((λx.M)Nφ)ψ is a redex;
its reduct is M[x 7→ N]ψ .

Given a term with a selected redex as a subterm,
we can reduce the whole term by one step
by replacing the redex with its reduct,

leaving the context alone.

The result is always well-formed.



Curry-Howard Reduction

One-step reduction ▷1β and its reflexive transitive closure ▷β
have some nice properties:

Type Preservation
If Mφ ▷β N, then Nφ

Confluence
If M ▷1β N and M ▷1β O, then there is a P with N ▷β P and O ▷β P

Strong Normalization
All reduction paths are finite



Curry-Howard Reduction

Together, these mean that every Mφ has a unique normal form Nφ,
which can be reached by reducing it willy-nilly until it can’t be

reduced farther.

This supports thinking of Mφ as a program for calculating a φ,
normal forms as the values calculated,
and reduction as program execution.



Core type theory



Core type theory Types

Again, propositions serve as types.

There is no ⊥, and / is not a proposition/type.

→ is as before

¬φ is the type of things that take input of type φ and then crash.



Core type theory Terms

There are variables xφ, yφ, zφ, . . . of each type φ,

given terms Mφ→ψ and Nφ, there is (MNφ)ψ ,

given a variable xφ and a term Mψ , there is (λx.M)φ→ψ ,



Core type theory Terms

given a variable xφ and a term M/ in which x occurs,
there is (λx.M)¬φ and (λx.M/)φ→ψ ,

if it crashes, we can note that it crashes,
and if it crashes, we can pretend it outputs any ψ

given M¬φ and Nφ, there is (MNφ)/.

with the right input, we can make it crash



Core type theory Terms

given a variable xφ and a term M/ in which x occurs,
there is (λx.M)¬φ and (λx.M/)φ→ψ ,

if it crashes, we can note that it crashes,
and if it crashes, we can pretend it outputs any ψ

given M¬φ and Nφ, there is (MNφ)/.

with the right input, we can make it crash



Core type theory Terms

given a variable xφ and a term M/ in which x occurs,
there is (λx.M)¬φ and (λx.M/)φ→ψ ,

if it crashes, we can note that it crashes,
and if it crashes, we can pretend it outputs any ψ

given M¬φ and Nφ, there is (MNφ)/.
with the right input, we can make it crash



Core type theory Reduction

Redexes and their reducts are ‘as before’.

A redex is anything of the form (λx.M)N,
and its reduct is M[x 7→ N].



Core type theory Reduction

Redex Reduct
• ((λx.Mψ)φ→ψNφ)ψ M[x 7→ N]ψ

• ((λx.M/)φ→ψNφ)ψ M[x 7→ N]/
• ((λx.M/)¬φNφ)/ M[x 7→ N]/



Core type theory Reduction

Redex Reduct
• ((λx.Mψ)φ→ψNφ)ψ M[x 7→ N]ψ

• ((λx.M/)φ→ψNφ)ψ M[x 7→ N]/
• ((λx.M/)¬φNφ)/ M[x 7→ N]/

Reduction does not always preserve type!



Core type theory Reduction

Redex Reduct
• ((λx.Mψ)φ→ψNφ)ψ M[x 7→ N]ψ

• ((λx.M/)φ→ψNφ)ψ M[x 7→ N]/
• ((λx.M/)¬φNφ)/ M[x 7→ N]/

Reduction can remove free variables!



Core type theory Reduction

So one-step reduction of a term at a redex is not so simple.

Just replacing the redex with its reduct, leaving the context alone,
is not always well-formed. (!)

The solution: leave the context alone when you can,
and otherwise discard what you must.



Core type theory Reduction

• If Mφ ▷1β M′φ, then MN ▷1β M′N
• If M ▷1β M′/, then MN ▷1β M′

• If Nφ ▷1β N′φ, then MN ▷1β MN′

• If N ▷1β N′/, then MN ▷1β N′/

• If Mφ ▷1β M′φ, then λx.M ▷1β λx.M′

• If M ▷1β M′/,
• if x ∈ FV(M′), then λx.M ▷1β λx.M′ (preserving hat)
• if x ̸∈ FV(M′), then λx.M ▷1β M′



Core type theory Reduction

Example(
(λyφ.(x¬φyφ)/)φ→θzφ

)θ is a redex, and it reduces in one step to
(x¬φzφ)/.

Example

Let M be the above redex, and let M′ be its reduct. Then
(λwρ.Mθ)ρ→θ ▷1β M′/.

Example
With the same M and M′, we have(
λzφ.(λwρ.Mθ)ρ→θ

)φ→ρ→θ
▷1β (λzφ.M′/)φ→ρ→θ .



Results



Results Preservation?

Reduction does not preserve type.

But: it can only change from a type to /

Never from one type to another, or from / to a type



Results Confluence?

Reduction is not confluent.

Example(
λvρ.

(
(λxψ.yθ)ψ→θ

(
(λu¬ρ.(u¬ρvρ)/)¬ρ→ψz¬ρ

)ψ)θ)ρ→θ

reduces in one step to (λvρ.yθ)ρ→θ , or to (λvρ.(z¬ρvρ)/)ρ→θ



Results Confluence?

Example((
(λvθ.(u¬θvθ)/)θ→φ→ψtθ

)φ→ψ (
(λxρ.(y¬ρxρ)/)ρ→φwρ

)φ)ψ
reduces in one step to (u¬θtθ)/, or to (y¬ρwρ)/



Results Confluence?

Let =β be the least equivalence relation including ▷β .

Then for all terms M,N, regardless of type, M =β N. (!)



Results Weakenings of confluence?

It might be nice to find a weakening of confluence
that reduction does obey.

It’s definitely not:
confluent on closed terms,
confluent-but-for-/s,

confluent on atomic types.

But is it confluent-but-for-/s on closed terms of atomic type?
Is there a confluent reduction strategy?



Results Strong normalization?

Reduction is still strongly normalizing.

Every reduction path is finite.



Results Strong normalization?

The proof is an old one
(newfangled proofs don’t work here!):

define a notion of ‘strongly computable term’ by induction on types,
then show simultaneously that all SC terms are SN

and that all terms are SC.



Results Strong normalization?

So core ‘programs’ always terminate.

But whether they crash,
and what result they produce if they don’t,
can depend on choices made in execution.



Wrapup



Wrapup Comparisions

Core logic is not very far from intuitionistic logic.

But their associated type theories are very different.

Preservation and confluence do not hold in core type theory,
although strong normalization still does.



Wrapup Conclusion

Girard has said that a logic without cut elimination
is ‘like a car without [an] engine’.

Core type theory seems to show that this is wrong:
despite the lack of cut elimination, computation proceeds as usual.

(This is basically what Tennant’s been saying all along.)



Wrapup Conclusion

Core logic, it turns out, is more like a car without a steering wheel.


	Core logic
	What is it?

	Curry-Howard
	Types
	Terms
	Reduction

	Core type theory
	Types
	Terms
	Reduction

	Results
	Preservation?
	Confluence?
	Weakenings of confluence?
	Strong normalization?

	Wrapup
	Comparisions
	Conclusion


