Axioms $A \triangleright A$, where A is atomic

KL:
$$\frac{\Gamma \triangleright \Delta}{\Gamma, A \triangleright \Delta}$$
 KR: $\frac{\Gamma \triangleright \Delta}{\Gamma \triangleright A, \Delta}$ WL: $\frac{\Gamma, A, A \triangleright \Delta}{\Gamma, A \triangleright \Delta}$ WR: $\frac{\Gamma \triangleright A, A, \Delta}{\Gamma \triangleright A, \Delta}$

Cut: $\frac{\Gamma \triangleright A, \Delta}{\Gamma, \Gamma' \triangleright \Delta, \Delta'}$

Structural rules

$$\neg L: \quad \frac{\Gamma \triangleright A, \Delta}{\Gamma, \neg A \triangleright \Delta} \quad \neg R: \quad \frac{\Gamma, A \triangleright \Delta}{\Gamma \triangleright \neg A, \Delta} \quad \neg L: \quad \frac{\Gamma, A_i \triangleright \Delta}{\Gamma, A_0 \sqcap A_1 \triangleright \Delta} \quad \neg R: \quad \frac{\Gamma \triangleright A, \Delta}{\Gamma \triangleright A \sqcap B, \Delta}$$

$$T() \perp L: \quad \frac{\Gamma, A \triangleright \Delta}{\Gamma, T(A) \triangleright \Delta} \quad T() \perp R: \quad \frac{\Gamma \triangleright A, \Delta}{\Gamma \triangleright T(A), \Delta} \quad \otimes L: \quad \frac{\Gamma, A, B \triangleright \Delta}{\Gamma, A \otimes B \triangleright \Delta} \quad \otimes R: \quad \frac{\Gamma \triangleright A, \Delta}{\Gamma, \Gamma' \triangleright A \otimes B, \Delta}$$

$$Disjunctions \sqcup, \oplus \text{ dual to } \sqcap, \otimes, \text{ respectively.}$$

Operational rules

MAAL:	Id + K + connective rules	MAALT:	Maal + T rules
ST:	MAAL + W	STT:	ST + T rules = MAALT + W

Def: A sequent S is a *contraction* of a sequent S' iff: S can be derived from S' by applications of W. S' is an *expansion* of S; write \widehat{S} for an expansion of S, and $\widehat{S}_1, \widehat{S}_2$, etc for more.

Def: For a set of sequents C, WC is the set of contractions of sequents in C, the closure of C under W.

Def: A derivation meets the $W \otimes (W \oplus)$ restriction iff: every application of $\otimes R$ ($\oplus L$) has at least one premise-sequent derived without use of W.

Logics and definitions

MAALT \subsetneq WMAALT \subsetneq STT:

 $ho p \sqcup \neg p$ is WMAALT-valid but not MAALT-valid. $ho (p \sqcup \neg p) \otimes (p \sqcup \neg p)$ is STT-valid but not WMAALT-valid. WMAALT is contractive, and has transparent truth: it does not admit cut.

Theorem: WMAALT is STT with the $W \otimes$ and $W \oplus$ restrictions.

Complete: A MAALT derivation followed by a bunch of Ws always meets the restrictions.

Corollary: WMAALT's additive fragment is STT.

Sound: Transform restricted-STT derivation of a sequent S into MAALT derivation of some \widehat{S} .

Induction on size of restricted-STT derivation: base case obvious.

Contracting MAALT

$$\sqcap L: \quad \frac{\Gamma, A_i \triangleright \Delta}{\Gamma, A_0 \sqcap A_1 \triangleright \Delta} \quad \leadsto \qquad \qquad \sqcap L^n: \quad \frac{\widehat{\Gamma}, A_i^n \triangleright \widehat{\Delta}}{\widehat{\Gamma}, A_0 \sqcap A_1^n \triangleright \widehat{\Delta}}$$

$$\otimes L: \quad \frac{\Gamma, A, B \triangleright \Delta}{\Gamma, A \otimes B \triangleright \Delta} \quad \leadsto \quad \frac{\mathrm{KL}^{|n-m|}:}{\otimes \mathrm{L}^{\mathrm{max}(m,n)}:} \quad \frac{\widehat{\Gamma}, A^n, B^m \triangleright \widehat{\Delta}}{\widehat{\Gamma}, A^{\mathrm{max}(m,n)}, B^{\mathrm{max}(m,n)} \triangleright \widehat{\Delta}}$$

$$\widehat{\Gamma}, A \otimes B^{\mathrm{max}(m,n)} \triangleright \widehat{\Delta}$$

Restricted $\otimes R$ case

$$\begin{array}{c} \text{KR:} \quad \frac{\Gamma \rhd A^m, \Delta}{\Gamma \rhd A^m, B^{n-1}, \Delta} \quad \text{KR:} \quad \frac{\Gamma \rhd B^n, \Delta}{\Gamma \rhd A^{m-1}, B^n, \Delta} \\ \qquad \frac{\Gamma \rhd A^m, B^{n-1}, \Delta}{\Gamma \rhd A^{m-1}, B^{n-1}, \Delta, A \sqcap B} \quad \text{KR:} \quad \frac{\Gamma \rhd B^n, \Delta}{\Gamma \rhd A^{m-2}, B^n, \Delta, A \sqcap B} \\ \qquad \frac{\Gamma \rhd A^{m-2}, B^{n-1}, \Delta, A \sqcap B^2}{\Gamma \rhd B^{n-1}, \Delta, A \sqcap B^n} \\ \qquad \vdots \\ \qquad \Gamma \rhd B^{n-1}, \Delta, A \sqcap B^m \\ \\ & \qquad \\ \text{Similarly to reach } \Gamma \rhd A^{m-1}, \Delta, A \sqcap B^n. \end{array}$$

$\sqcap R$ case (subpart 1)

Part 1 starts from the pair of $\Gamma \rhd A^m, \Delta$ and $\Gamma \rhd B^n, \Delta$, and gives both $\Gamma \rhd A^{m-1}, \Delta, A \sqcap B^n$ and $\Gamma \rhd B^{n-1}, \Delta, A \sqcap B^m$. Use KR to align these to $\Gamma \rhd A^{m-1}, \Delta, A \sqcap B^{\max(m,n)}$ and $\Gamma \rhd B^{n-1}, \Delta, A \sqcap B^{\max(m,n)}$, and repeat.

Part 1 lets us remove one A from the 'A-sequent' and one B from the 'B-sequent', at the price of adding lots of $A \sqcap B$ s. KR lets us prepare the results to be input into part 1 again. After $\min(m,n)-1$ rounds of this, we have either $\Gamma \rhd A, \Delta, A \sqcap B^x$ or $\Gamma \rhd B, \Delta, A \sqcap B^x$.

⊓R case (subpart 2)

$$\text{R:} \quad \frac{\Gamma \triangleright A, \Delta \quad \Gamma \triangleright B, \Delta}{\Gamma \triangleright A \sqcap B, \Delta}$$

$$\times \quad \frac{\vdots}{\widehat{\Gamma} \triangleright A, \widehat{\Delta}, A \sqcap B^{x}}$$

$$\stackrel{*:}{\widehat{\Gamma}} \triangleright A, \widehat{\Delta}, A \sqcap B^{x}$$

$$\stackrel{\text{R:}}{\widehat{\Gamma}} \triangleright A, B^{n-2}, \widehat{\Delta}, A \sqcap B^{x+1}$$

$$\stackrel{*:}{\widehat{\Gamma}} \triangleright B^{n-2}, \widehat{\Delta}, A \sqcap B^{x+1}$$

$$\stackrel{:}{\widehat{\Gamma}} \triangleright B^{n-2}, \widehat{\Delta}, A \sqcap B^{x+1}$$

⊓R case (main)