
A toolkit for metainferential logics

David Ripley

Monash University
http://davewripley.rocks



Introduction



Introduction What’s up?

Some exciting recent work in higher metainferences:

• BPS ‘A hierarchy…’
‘(Meta)inferential levels…’

• Pailos ‘A fully classical…’
• Scambler ‘Classical logic…’
• and more



Introduction What’s up?

Much of this work is tied to particular languages, models, and logics.

But there is plenty of structure here,
already being put to good use in this work,

that is perfectly general.



Introduction What’s up?

My goal for this talk, then,
is to explore how much of this work can be done

as abstractly as possible.

In particular, I will reconstruct the ST hierarchy
and show that it matches two-valued classical logic

without mentioning values, connectives, etc until the very end



Introduction What’s up?

Throughout, the results are mostly not new;
they are lifted from the above-mentioned works.

The point is to see just how much structure
higher metainferences give us



Introduction Language

For most of the talk, L is any language;
all I assume is that it is a set.



Introduction Levels

ℓ ranges over levels: −1, 0, 1, 2, . . .

• A meta−1inference is a member of L
• A metaℓ+1inference is [Γ � ∆],

where Γ and ∆ are sets of metaℓinferences

(Numbering in line with Pailos, not BPS/Scambler.)

These are the metainferences.



Counterexamples and consequence



Counterexamples and consequence Counterexample relations

I assume some fixed set of models.

A metaℓcounterexample relation is:
a relation between models and metaℓinferences

A full counterexample relation is:
a relation between models and metainferences

This is all ‘local’!



Counterexamples and consequence Counterexample relations

I assume some fixed set of models.

A metaℓcounterexample relation is:
a relation between models and metaℓinferences

A full counterexample relation is:
a relation between models and metainferences

This is all ‘local’!



Counterexamples and consequence Counterexample relations

Given a full counterexample relation X and a level ℓ,
the metaℓcounterexample relation X(ℓ) is:

the restriction of X in its codomain to metaℓinferences

We can give a full counterexample relation X
by specifying X(ℓ) for each level ℓ



Counterexamples and consequence Counterexample relations

Metaℓcounterexample relations and full counterexample relations
are all counterexample relations (XRs)

Given counterexample relation X, model m, and metainference µ,
mJXKµ means that X relates m to µ:

the model is a counterexample to the metainference

(The brackets are to help keep our eyes from getting hairy.)



Counterexamples and consequence Consequence relations

A metaℓconsequence relation is a set of metaℓinferences

A full consequence relation is a set of metainferences.



Counterexamples and consequence Consequence relations

Given a full consequence relation Σ and a level ℓ,
the metanconsequence relation Σ(n) is Σ restricted to

metaℓinferences

We can give a full consequence relation Σ

by specifying Σ(ℓ) for each level ℓ.

Metaℓconsequence relations and full consequence relations
are all consequence relations (CRs)



Counterexamples and consequence Pontificating

Keeping an eye on both counterexample relations
and consequence relations is key.

Probably what we care about is consequence relations.

But much of the new metainferential technology
requires counterexample relations
due to the use of local validity



Counterexamples and consequence Consequence from counterexamples

Given a metaℓcounterexample relation X, the metaℓconsequence
relation C(X) is the set of metaℓinferences not in the image of X.

Given a full counterexample relation X, the full consequence relation
C(X) is the set of metainferences not in the image of X.



Counterexamples and consequence Consequence from counterexamples

It is familiar to fix a counterexample relation
and explore effects on consequence relations of restricting or

expanding the class of models.

This is the reverse: our models are fixed,
and it is shifting counterexample relations that effects consequence.

(Shifting counterexample relations
can simulate restricting models)



Counterexamples and consequence Already some structure

This all assumes nothing about the language, about models, etc.
(We don’t even have monotonicity of consequence relations!)

But there’s already enough here to see some structure
and prove some simple results.



Counterexamples and consequence Already some structure

Fact
For any full counterexample relation X and level ℓ,
C(X(ℓ)) = C(X)(ℓ)

Full XRs ℓXRs

Full CRs ℓCRs

_(ℓ)

C(_)

_(ℓ)

C(_)



Counterexamples and consequence Already some structure

Example
There can be distinct counterexample relations X, Y
such that C(X) = C(Y).

(meta0counterexample relations: ST and CL
full counterexample relations: STω and ĈL)

If we care about counterexample:
giving just a consequence relation isn’t enough.

If we care about consequence:
asking for a particular counterexample relation is asking too much



Connections between levels



Connections between levels Lowering

Given a metaℓ+1counterexample relation X,
its lowering ↓ X is the metaℓcounterexample relation such that

for any model m and any metaℓinference µ,
mJ↓ XKµ iff mJXK[�µ].

Given a metaℓ+1consequence relation Σ,
its lowering ↓Σ is the metaℓconsequence relation such that

for any metaℓinference µ,
µ ∈ ↓Σ iff [�µ] ∈ Σ



Connections between levels Lowering

Fact
For any metaℓ+1counterexample relation X,
C(↓ X) = ↓ C(X).

(ℓ+ 1)XRs ℓXRs

(ℓ+ 1)CRs ℓCRs

↓ _

C(_)

↓ _

C(_)



Connections between levels Lifting counterexample relations

Given a metaℓcounterexample relation X,
its lifting ↑ X is the metaℓ+1counterexample relation such that

for any model m and any metan+1inference [Γ � ∆],
mJ↑ XK[Γ � ∆] iff:

there is no γ ∈ Γ with mJXKγ, and mJXKδ for all δ ∈ ∆



Connections between levels Lifting counterexample relations

Unlike lowering, we cannot lift consequence relations
in a way that matches lifing for counterexample relations.

There can be metaℓcounterexample relations X and Y
with C(X) = C(Y) but C(↑ X) ̸= C(↑ Y).
(At level 0, ST and CL are such.)

So there cannot be any operation ↑ on consequence relations
such that in general ↑ C(X) = C(↑ X).



Connections between levels Lifting counterexample relations

Lifting depends on information carried by a counterexample relation
that is not there in the consequence relation it determines

Or: if someone specifies just a metaℓconsequence relation,
they have not thereby settled

on any particular metaℓ+1consequence relation



Connections between levels Slashing counterexample relations

Lifting is a special case of slashing:

Given a metaℓcounterexample relation X,
its lifting ↑ X is the metaℓ+1counterexample relation such that

for any model m and any metan+1inference [Γ � ∆],
mJ ↑ XK[Γ � ∆] iff:

there is no γ ∈ Γ with mJXKγ, and mJXKδ for all δ ∈ ∆.

So X↑ is X/X



Connections between levels Slashing counterexample relations

Lifting is a special case of slashing:

Given two metaℓcounterexample relations X and Y,
their slashing X/Y is the metaℓ+1counterexample relation such that

for any model m and any metan+1inference [Γ � ∆],
mJX/YK[Γ � ∆] iff:

there is no γ ∈ Γ with mJXKγ, and mJYKδ for all δ ∈ ∆.

So X↑ is X/X



Connections between levels Slashing counterexample relations

Slashing is key in work on higher metainferences.

Just as with lifting,
there is no corresponding operation on consequence relations.

This depends on the extra detail
carried by counterexample relations.



Connections between levels Lowering, lifting, slashing

Fact
For any metaℓcounterexample relations X, Y:
↓(X/Y) = Y

Fact
So lowering is a retraction of lifting:
that is, for any metaℓcounterexample relation X, we have ↓(↑ X) = X

Fact
Lifting is injective;
lowering is not injective and so not invertible



Excursion 1: more on slashing



Connections between levels Tonicity and distribution

Slashing has some exploitable structure

fact
(X/Z) ∪ (Y/Z) ⊆ (X ∩ Y)/Z
(X/Z) ∩ (Y/Z) = (X ∪ Y)/Z

fact
(Z/X) ∪ (Z/Y) ⊆ Z/(X ∪ Y)
(Z/X) ∩ (Z/Y) = Z/(X ∩ Y)



Connections between levels Tonicity and distribution

The following is enough to settle a great deal:

fact
If X′ ⊆ X and Z ⊆ Z′, then X/Z ⊆ X′/Z′

fact
If X/Z ⊆ X′/Z′, then X′ ⊆ X and Z ⊆ Z′

(So lifting is not monotonic)



Connections between levels Tonicity and distribution

For any XRs T ⊊ S:

(More counterexamples at the top)

All are distinct;
all inclusions shown

SS TT

ST

TS



Connections between levels Tonicity and distribution

SS/SS

SS/TS

SS/ST

SS/TT

ST/SS

ST/TS

ST/ST

ST/TT

TS/SS

TS/TS

TS/ST

TS/TT

TT/SS

TT/TS

TT/ST

TT/TT



Connections between levels Tonicity and distribution

Or take X, Y, Z with

X Y

Z

Up a level, we get this:

XX XY

XZ

YX YY

YZ

ZX ZY

ZZ



Connections between levels Tonicity and distribution

So to know the ⊆ structure of all slashed XRs at any level,
it’s enough to know the ⊆ structure of a set they’re built from

None of this depends at all on what language we’re working with
or what our models are

The definition of slashing all on its own does the work



Excursion 2: adjoints to lowering



Connections between levels A question

When a monotonic function (like lowering)
has no inverse, there is sometimes a next-best:

perhaps it has an adjoint or two.

(Since these are posets,
adjunctions are monotone Galois connections.)



Connections between levels The adjoint functor theorem

for any model m and any metaℓinference µ,
mJ↓ XKµ iff mJXK[�µ].

It follows that ↓ is monotonic,
and that ↓

∪
Xi =

∪
↓ Xi

And it follows from that that ↓ is a left adjoint:
there is a ↑o : ℓXR→ (ℓ+ 1)XR

such that ↓ ⊣ ↑o, which means ↓ X ⊆ Y iff X ⊆ Y↑o

Y↑o =
∪
{Z| ↓ Z ⊆ Y}



Connections between levels The adjoint functor theorem

for any model m and any metaℓinference µ,
mJ↓ XKµ iff mJXK[�µ].

It follows that ↓ is monotonic,
and that ↓

∩
Xi =

∩
↓ Xi

And it follows from that that ↓ is a right adjoint:
there is a ↑i : ℓXR→ (ℓ+ 1)XR

such that ↑i ⊣ ↓, which means Y↑i ⊆ X iff Y ⊆ ↓ X

Y↑i =
∩
{Z|Y ⊆ ↓ Z}



Connections between levels Some results

We have an adjoint situation ↑i ⊣ ↓ ⊣ ↑o

(monotone Galois connection)

↓ is not invertible, but ↑i and ↑o are kinda inversey to it.

X↑i is the least Y with X ⊆ ↓ Y,
and X↑o is the greatest Y with ↓ Y ⊆ X.

Since ↓ is surjective, we have ↓(X↑i) = X = ↓(X↑o),
and X↑i and X↑o are the least and greatest XRs that lower to X.

Recall that ↓(Y/X) = X for any Y,
so X↑i ⊆ Y/X ⊆ X↑o



Connections between levels Some results

〈model, metà inf〉s

X = ↓(X↑i ) = ↓(Y/X) = ↓(X↑o )

X

〈model, metà +1 inf〉s

X↑i ⊆ Y/X ⊆ X↑o

X↑i

Y/X

X↑o



Connections between levels Some results

If we think ↓ is onto something worth exploring,
and we want to think about natural ways of climbing up the levels,

↑i and ↑o suggest themselves at least as much as ↑ does.



Connections between levels An example

Example
Boolean bivaluations, with CL(−1) the falsity relation.

C(CL(−1)) is the set of classical theorems

C(CL↑(−1)) is usual classical consequence

C(CL↑o(−1)) validates [Γ � ∆] iff:
Γ is empty and [�∆] classically valid

C(CL↑i(−1)) validates [Γ � ∆] iff not:
Γ is empty and [�∆] not classically valid



Excursions over!



Full counterexample relations



Full counterexample relations Coherence

So far that’s all level by level,
or moving between adjacent levels.

But we can use it to get a look at full counterexample relations.



Full counterexample relations Coherence

A full counterexample relation X is:

ℓ-downward coherent iff ↓ X(ℓ′) = X(ℓ′ − 1) for all ℓ′ ≤ ℓ

ℓ-upward coherent iff ↑ X(ℓ′) = X(ℓ′ + 1) for all ℓ′ ≥ ℓ

downward coherent iff ℓ-downward coherent for all ℓ

upward coherent iff ℓ-upward coherent for all ℓ



Full counterexample relations Building full counterexample relations

Given a ℓXR X, define the full XR X̂
by lifting and lowering.

Some authors identify X and X̂; I do not.
This is just one way to fit things together.

...

X̂(ℓ+ n) =

↑n X
...

X̂(ℓ+ 2) =

↑2 X

X̂(ℓ+ 1) =

↑ X
X̂(ℓ) = X

X̂(ℓ− 1) =

↓ X

X̂(ℓ− 2) =

↓2 X
...

X̂(ℓ−m) =

↓m X
...

X̂(−1) =

↓ℓ+1 X
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Full counterexample relations Principality

Fact
Where X is a metaℓcounterexample relation,
X̂ is downward coherent and ℓ-upward coherent

Fact
If a full counterexample relation Y is downward coherent and
ℓ-upward coherent, then Y = Ŷ(ℓ)



Full counterexample relations Agreement

Metaℓcounterexample relations X, Y agree iff C(X) = C(Y)

Full counterexample relations X, Y
agree at level ℓ iff X(ℓ) and Y(ℓ) agree

They agree fully iff C(X) = C(Y)



Full counterexample relations Agreement

Fact
If full counterexample relations X, Y
are ℓ-downward coherent and agree at level ℓ,
then they agree at all levels m ≤ ℓ

Example
The corresponding claim for ℓ-upward coherence is false

ŜT and ĈL are determined by meta0counterexample relations, so are
0-upward coherent. They agree at level 0, but not at level 1



Full counterexample relations Obedience

A full consequence relation Σ is self-obeying at level ℓ iff:
for every [Γ � ϕ] ∈ Σ(ℓ+ 1), if Γ ⊆ Σ(ℓ) then ϕ ∈ Σ(ℓ).

A full consequence relation Σ is strongly self-obeying at level ℓ iff:
for every [Γ � ∆] ∈ Σ(ℓ+ 1), if Γ ⊆ Σ(ℓ) then ∆ ∩ Σ(ℓ) ̸= ∅.

(Strong self-obedience is Scambler’s ‘closed [sic] under its own laws’)



Full counterexample relations Obedience

Self-obedience is more familiar than strong self-obedience.

Σ is self-obeying at level ℓ iff
Σ(ℓ) is closed under the operation

C(Π) = Π ∪ {ϕ|[Γ � ϕ] ∈ Σ(ℓ+ 1) and Γ ⊆ Π}

There is no closure operation
connected to strong self-obedience in this way

Example
ĈL is self-obeying but not strongly self-obeying at level −1,
since [p ∨ ¬p � p,¬p] ∈ ĈL(0)



Full counterexample relations Obedience

Self-obedience is more familiar than strong self-obedience.

Σ is self-obeying at level ℓ iff
Σ(ℓ) is closed under the operation

C(Π) = Π ∪ {ϕ|[Γ � ϕ] ∈ Σ(ℓ+ 1) and Γ ⊆ Π}

There is no closure operation
connected to strong self-obedience in this way

Example
ĈL is self-obeying but not strongly self-obeying at level −1,
since [p ∨ ¬p � p,¬p] ∈ ĈL(0)



Full counterexample relations Obedience

fact
If a full counterexample relation X is ℓ-upward coherent,
then C(X) is self-obeying at level n for all n ≥ ℓ

Example
Downward coherence does not suffice for self-obedience.
ŜTλ is downward coherent, but not self-obeying at level −1



The abstract slash hierarchy



The abstract slash hierarchy Order and counterexample

Consider any relation ⊑ on models

A counterexample relation X goes up ⊑ iff:
whenever m ⊑ m′ and mJXKµ, then m′JXKµ

A counterexample relation X goes down ⊑ iff:
whenever m′ ⊑ m and mJXKµ, then m′JXKµ



The abstract slash hierarchy Order and counterexample

Fact
If X goes down ⊑ and Y goes up it,
then Y/X goes down it and X/Y goes up it.



The abstract slash hierarchy Restricting models

Where X is a counterexample relation andM a set of models,
let X|M be the restriction of X toM.

A setM of models is at the top of ⊑ iff
for every model m there is some m′ ∈ M with m ⊑ m′

Fact
IfM is at the top of ⊑ and X goes up ⊑,
then X agrees (fully) with X|M



The abstract slash hierarchy Slashing up the ladder

Suppose we have the following:

two meta−1counterexample relations X and Y
and a setM of models such that:

X|M = Y|M
M is at the top of ⊑,

and X goes down ⊑ and Y goes up it.

This is enough for the key hierarchy result



The abstract slash hierarchy Slashing up the ladder

Define:

• • XY−1 = Y
• YX−1 = X

• • XYℓ+1 = (YXℓ)/(XYℓ)
• YXℓ+1 = (XYℓ)/(YXℓ)

Let XYω(ℓ) = XYℓ, and let YXω(ℓ) = YXℓ



The abstract slash hierarchy Slashing up the ladder

Fact

For every level ℓ, C(XYℓ) = C(X̂|M(ℓ)) = C(Ŷ|M(ℓ))

XYω agrees fully with X̂|M (= Ŷ|M)



The abstract slash hierarchy Slashing up the ladder

This gives a strategy for liberalizing a model theory
without affecting the resulting consequence relation at any level



Example hierarchies



Example hierarchies The original ST

Our language is a usual propositional language;
our total space of models is strong Kleene valuations;

M is Boolean valuations;
⊑ is information order;
S is having value ̸= 1;
T is having value 0.

The following are immediate:
M is at the top of ⊑;

S goes down ⊑ and T up it;
and X|M = Y|M

So STω agrees fully with CL.

The first-order extension is immediate.



Example hierarchies The original ST

Our language is a usual propositional language;
our total space of models is strong Kleene valuations;

M is Boolean valuations;
⊑ is information order;
S is having value ̸= 1;
T is having value 0.

The following are immediate:
M is at the top of ⊑;

S goes down ⊑ and T up it;
and X|M = Y|M

So STω agrees fully with CL.
The first-order extension is immediate.



Example hierarchies Variation: weak Kleene

The same for weak Kleene.



Example hierarchies Intermediate generality: adding a value to a matrix

For any matrix consequence,
let all existing values be ⊑-incomparable,
and add a new value ∗ at the ⊑-bottom.

Extend existing operations to be ⊑-monotonic,
so ⊑ extends to models pointwise.

M is the models that don’t use ∗.
X is being undesignated in the old sense or having value ∗;

Y is being undesignated in the old sense.

Then XYω agrees fully with the original matrix consequence.



Example hierarchies Intermediate generality: adding a value to a matrix

Other examples?



Conclusion



Conclusion Summary

Much recent work on ST-style metainferential hierarchies
can be made fully general

The structure of metainferences themselves
is enough for abstract methods to get a grip

Slashing and lowering in particular seem interesting
in their own right, regardless of language or models

This allows for quick generalizations of known results
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